[1] Gokhberg M B, Morgounov V A, Yoshino T, et al. Experimental measurement of electromagnetic emissions possibly related to earthquakes in Japan[J]. J Geophys Res Sol Earth, 1982, 87(B9): 7824-7828. [2] Parrot M. Correlation between GEOS VLF emissions and earthquakes[J]. Ann Geophys, 1985, 3(6): 737-747. [3] Pulinets S A, Gaivoronska T B, Contreras A L, et al. Correlation analysis technique revealing ionospheric precursors of earthquakes[J]. Natural Hazards & Earth System Sciences, 2004, 4: 697-702. [4] Hayakawa M, Kawate R, Molchanov O A, et al. Results of ultra-low-frequency magnetic field measurements during the Guam Earthquake of 8 August 1993[J]. Geophys Res Lett, 1996, 23(3): 241-244. [5] Liu J, Chen Y, Chuo Y, et al. Variations of ionospheric total electron content during the Chi-Chi earthquake[J]. Geophys Res Lett, 2001, 28(1): 1383-1386. [6] Liu J Y, Chen C H, Hattori K. Temporal and spatial precursors in the ionospheric global positioning system (GPS) total electron content observed before the 26 December 2004 M9.3 Sumatra-Andaman Earthquake[J]. J Geophys Res Space Phys, 2012, 115: A09312. [8] Shen X, Zhang X, Wang L, et al. The earthquake-related disturbances in ionosphere and project of the first China seismo-electromagnetic satellite[J]. Earthquake Science, 2011, 24: 639-650. [9] Zhang X, Shen X H, Liu J, et al. Ionospheric perturbations of electron density before the Wenchuan Earthquake[J]. International Journal of Remote Sensing, 2010, 31(13): 3559-3569. [10] 陈鹏. GNSS电离层层析及震前电离层异常研究[J]. 测绘学报, 2013, 42(3): 474-474. [11] 张学民, 刘静, 赵必强, 等. 玉树地震前的电离层异常现象分析[J]. 空间科学学报, 2014, 34(6): 822-829. [12] 姚宜斌, 翟长治, 孔建, 等. 2015年尼泊尔地震的震前电离层异常探测[J]. 测绘学报, 2016, 45(4): 385-395. [13] Yang L, Zhao H, Dong M, et al. Ionospheric Anomaly before Kyushu, Japan Earthquake[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(S2): 139-146. [14] 邹斌, 常晓涛, 郭金运, 等. 2014年鲁甸6.5级地震震前TEC异常分析[J]. 测绘科学, 2017, 42(3): 48-54. [15] Liu J Y, Hattori K, Chen Y I. Application of Total Electron Content Derived from the Global Navigation Satellite System for Detecting Earthquake Precursors[J]. Pre-Earthquake Processes: A Multidisciplinary Approach to Earthquake Prediction Studies, Geophysical Monograph 234, 2018, 17: 305-317. [16] He L, Heki K. Three-dimensional distribution of ionospheric anomalies prior to three large earthquakes in Chile[J]. Geophys Res Lett, 2016, 43(14): 7287-7293. [17] Heki K, Enomoto Y. MW dependence of the preseismic ionospheric electron enhancements[J]. J Geophys Res Space Phys, 2015, 120(8): 7006-7020. [18] Heki K. Ionospheric electron enhancement preceding the 2011 Tohoku-Oki earthquake[J]. Geophys Res Lett, 2011, 38(17): 136-147. [19] 张小红, 任晓东, 吴风波, 等. 震前电离层TEC异常探测新方法[J]. 地球物理学报, 2013, 56(2): 441-449. [20] 张小红, 任晓东, 吴风波, 等. 自回归移动平均模型的电离层总电子含量短期预报[J]. 测绘学报, 2014, 43(2): 118-124. [21] Tulunay E, Senalp E T, Radicella S M, et al. Forecasting total electron content maps by neural network technique[J]. Radio Science, 2006, 41(4): RS4016. [22] Oyeyemi E O, Poole A W V, Mckinnell L A. On the global short-term forecasting of the ionospheric critical frequency foF2 up to 5 hours in advance using neural networks[J]. Radio Science, 2005, 40(6): RS6012. [23] Francis N M, Brown A G, Cannon P S, et al. Prediction of the hourly ionospheric parameter f(O)F(2) using a novel nonlinear interpolation technique to cope with missing data points[J]. Journal of Geophysical Research Space Physics, 2001, 106(A12): 30077-30083. [24] Huang Z, Yuan H. Ionospheric single-station TEC short-term forecast using RBF neural network[J]. Radio Science, 2014, 49(4): 283-292. [25] Xie S F, Chen J, Huang L K, et al. Ionospheric TEC Prediction Based on Holt-Winters Models[J]. Journal of Geodesy & Geodynamics, 2017, 37: 72-76. [26] Sean J. Taylor & Benjamin Letham. Forecasting at Scale[J]. The American Statistician, 2018, 72(1): 37-45. [27] Taylor S J, Letham B. prophet: automatic forecasting procedure. R package version 0.3, 2017. [28] Zhao N Z, Liu Y, Jennifer K Vanos et al. Day-of-week and seasonal patterns of PM2.5 concentrations over the United States: Time-series analyses using the Prophet procedure[J]. Atmospheric Environment, 2018, 192: 116-127. [29] 赵海山, 杨力, 徐世依. 太阳活动高低年电离层TEC变化特性分析[J]. 导航定位学报, 2017, 5(1): 24-30. [30] Harvey A C, Shephard N. Structural time series models[C]∥Maddala G, Rao C, Vinod H (Eds.), Handbook of Statistics[M]. Vol 11. Amsterdam: Elsevier, 1993. [31] Byrd R H, Lu P, Nocedal J, et al. A Limited Memory Algorithm for Bound Constrained Optimization[J]. SIAM Journal on Scientific Computing, 1995, 16(5): 1190-1208. [32] 刘权明. 基于Prophet的CPI指数预测[J]. 中国管理信息化, 2018, 21(13): 122-123. [33] Brockwell P J, Davis R A. Introduction to Time Series and Forecasting[M]. Third ed. Springer Texts in Statistics, 2016. [34] Niu M, Wang Y, Sun S, et al. A novel hybrid decomposition-and-ensemble model based on CEEMD and GWO for short-term PM 2.5, concentration forecasting[J]. Atmospheric Environment, 2016, 134: 168-180. [35] Wang P, Zhang G, Zhang H, et al. novel hybrid-Garch model based on Arima and SVM for PM2.5 concentrations forecasting[J]. Atmospheric Pollution Research, 2017, 8(5): 850-860. [36] Mini K G, Kuriakose Somy, Sathianandan T V. Building-model CPUE series for the fishery along northeast coast of India: A comparison between the Holt-Winters, ARIMA and NNAR models[J]. Journal of the Marine Biological Association of India, 2015, 57(2): 75-82. |