[1] King C Y. Gas geochemistry applied to earthquake prediction: an overview[J]. Journal of Geophysical Research, 1986, 91(B12): 12269-12281. [2] King C Y, Zhang W, Zhang Z C. Earthquake-induced groundwater and gas changes[J]. Pure and Applied Geophysics, 2006, 163(4): 633-645. [3] Toutain J P, Baubron J C. Gas geochemistry and seismotectonics: a review[J]. Tectonophysics, 1999, 304(1-2): 1-27. [4] Denman K L. Coupling s between changes in the climates system and biogeochemistry[A]. In : Solomon S ed. Climate change 2007: The physical science basis. Contribution of working group I to the four the assessment report of the intergovernmental panel on climate change[C]. Cambridge University. Press, Cambridge, UK, 2007, 7: 499-587. [5] Etiope G. Natural emissions of methane from geological seepage in Europe[J]. Atmospheric Environment, 2009 , 43(7): 1430-1443. [6] 岳中琦. 汶川地震与山崩地裂的极高压甲烷天然气成因和机理[J]. 地学前缘, 2013, 20(6): 15-20. [7] 卢振权, 强祖基, 吴必豪. 南海临震前卫星热红外增温异常原因初探[J]. 地球学报, 2002, 23(1): 42-46. [8] 黄福林, 张训华, 夏响华, 等. 中国东部和海域低层大气甲烷及其同系物分布[J]. 科学通报, 1998, 43(16): 1767-1771. [9] Li Y, Du J G, Wang F K, et al. Geochemical characteristics of soil gas in the Yanhuai Basin, northern China[J]. Earthquake Science, 2009, 22(1): 93-100. [10] 王杰, 张雄, 潘黎黎, 等. 芦山地震(MS7.0)前甲烷释放与大气增温异常[J]. 地学前缘, 2013, 20(6): 29-35. [11] 崔月菊, 杜建国, 陈杨, 等. 汶川MS8.0地震前后龙门山断裂带CO和CH4排气增强[J]. 地震研究, 2016, 39(2): 239-245. [12] 崔月菊, 杜建国, 荆凤, 等. 2008年汶川MS8.0地震前后川西含碳气体卫星高光谱特征[J]. 地震学报, 2016, 40(3): 448-457. [13] 周凌晞, 温玉璞, 李金龙. 瓦里关山大气CO本底变化[J]. 环境科学学报, 2004, 24(4): 637-642. [14] Daniel J S, Solomon S. On the climate forcing of carbon monoxide[J]. Journal of Geophysical Research, 1998, 103(D11): 13249-13260. [15] Singh R P, Kumar J S, Zlotnicki J, et al. Satellite detection of carbon monoxide emission prior to the Gujarat earthquake of 26 January 2001[J]. Applied Geochemistry, 2010, 25(4): 580-585 [16] Cui Y, Du J, Zhang D, et al. Anomalies of total column CO and O3 associated with great earthquakes in recent years[J]. Natural Hazards and Earth System Sciences, 2013, 13: 2513-2519, 140. [17] 孙玉涛, 崔月菊, 刘永梅, 等. 苏门答腊两次M>8.0地震前后CO和O3气体地球化学异常与地面验证[J]. 地震研究, 2014, 37(4): 222-227. [18] 张国民, 马宏生, 王辉, 等. 中国大陆活动地块与强震活动关系[J]. 中国科学: 地球科学, 2004, 34(7): 591-599. [19] 刘建辉, 张培震, 郑德文, 等. 贺兰山晚新生代隆升的剥露特征及隆升模式[J]. 中国科学: 地球科学, 2010, 4(1): 50-60. [20] 韩晓明, 刘芳, 张帆, 等. 2015年阿拉善左旗MS5.8地震的震源机制和重新定位[J]. 地震学报, 2015, 37(6): 1059-1063. [21] 吴晓智, 王桂君, 郑民, 等. 雅布赖盆地构造演化与油气聚集[J]. 地质科学, 2015, 50(1): 74-87. [22] 高山林, 韩庆军, 杨华. 鄂尔多斯盆地燕山运动及其与油气关系[J]. 吉林大学学报, 2000, 30(4): 353-358. [23] 方双喜, 周凌晞, 许林, 等. 我国4个WMO/GAW 本底站大气CH4浓度及变化特征[J]. 环境科学, 2012, 33(9): 2917-2923. [24] 梅秀萍, 邵志刚, 张浪平, 等. 南北地震带北段强震破裂空段的地震危险性研究[J]. 地震学报, 2012, 34(4): 509-525. [25] Aumann H H, Chahine M T, Gautier C, et al. AIRS/AMSU/HSB on the Aqua mission: Design, science objectives, data products and processing system[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(2): 253-264. [26] Won Y-I. Readme document for AIRS Level-3 version 5 standard products: Daily (AIRH3STD, AIRX3STD, AIRS3STD) 8-days (AIRH3ST8, AIRX3ST8, AIRS3ST8) & monthly (AIRH3STM, AIRX3STM, AIRS3STM). 2008, http:∥disc.sci.gsfc.nasa.gov/AIRS/documentation/readmes/README.AIR-3ST.pdf. [27] Melsheimer C, Verdes C, Buehler S A, et al. Intercomparison of general purpose clear sky atmospheric radiative transfer models for the millimeter sub millimeter spectral range[J]. Radio Science, 2016, 40(1): 1-25. [28] Adushkin V V, Kudryavtsev V P. Estimating the global flux of methane into the atmosphere and its seasonal variations[J]. Izvestiya Atmospheric & Oceanic Physics, 2013, 49(2): 128-136. [29] Tramutoli V. Robust AVHRR Techniques (RAT) for environmental monitoring: theory and applications, in Earth Surface Remote Sensing II[J]. Proc. SPIE, 1998, 3496: 101-113. [30] Tramutoli V, Di Bello G, Pergola N. Robust satellite techniques for remote sensing of seismically active areas[J]. Annali Di Geofisica, 2001, 44(2): 295-312. [31] Cui Y, Ouzounov D, Hatzopoulos N, et al. Satellite observation of CH4 and CO anomalies associated with the Wenchuan MS8.0 and Lushan MS7.0 earthquakes in China[J]. Chemical Geology, 2017, 469: 185-191. [32] Artuso F, Chamard P, Piacentino S, et al. Influence of transport and trends in atmospheric CO2 at Lampedusa[J]. Atmospheric Environment, 2009, 43(19) : 3044-3051. [33] Martinelli G, Dadomo A. Factors constraining the geographic distribution of earthquake geochemical and fluid-related precursors[J]. Chemical Geology, 2017, 469: 176-184. [34] Asadzadeh S, de Souza Filho C S. Spectral remote sensing for onshore seepage characterization: A critical overview[J]. Earth Science Reviews, 2017, 168. [35] 秦瑜, 赵春生. 大气化学基础[M]. 北京: 气象出版社, 2003, 168-170. [36] Horowitz L W, Walters S, Mauzerall D L, et al. A global simulation of tropospheric ozone and related tracers: Description and evaluation of MOZART, version 2[J]. Journal of Geophysical Research, 2003, D24(108): 4784, doi:10.1029/2002JD002853. [37] 崔月菊, 李静, 王燕艳, 等. 地震遥感气体地球化学研究进展[J]. 地球科学进展, 2015, 30(2): 284-294. [38] McConnell J C, McElroy M B, Wofsy S C. Natural sources of atmospheric CO[J]. Nature, 1971, 233: 187-188. [39] Fishman J, Seiler W. Correlative nature of ozone and carbon monoxide in the troposphere: implications for the tropospheric ozone budget[J]. Journal of Geophysical Research, 1983, 88(C6): 3662-3670. |