[1] Wen X Z, Ma S L, Xu X W, et al. Historical pattern and behavior of earthquake ruptures along the eastern boundary of the Sichuan-Yunnan faulted-block, southwestern China[J]. Physics of the Earth and Planetary Interiors, 2008, 168(1-2): 16-36. [2] 易桂喜, 范军, 闻学泽. 由现今地震活动分析鲜水河断裂带中-南段活动习性与强震危险地段[J]. 地震, 2005, 25(1): 58-66. YI Gui-xi, FAN Jun, WEN Xue-ze. Study on faulting behavior and fault-segments for potential strong earthquake risk along the central-southern segment of Xianshuihe fault zone based on current seismicity [J]. Earthquake, 2005, 25(1): 58-66 (in Chinese). [3] Zhang P Z, Deng Q D, Zhang G M. Active tectonic blocks and strong earthquakes in the continent of China[J]. Science in China Series D: Earth Sciences, 2003, 46(Suppl.): 13-24. [4] 张世民, 谢富仁. 鲜水河—小江断裂带7级以上强震构造区的划分及其构造地貌特征[J]. 地震学报, 2001, 23(1): 36-44. ZHANG Shi-min, XIE Fu-ren. Division seismo-tectonic divisions of strong earthquakes (MS≥7.0) and their tectonic geomorphology along Xianshuihe-Xiaojiang fault zone[J]. Acta Seismologica Sinica, 2001, 23(1): 36-44 (in Chinese). [5] 熊探宇, 姚鑫, 张永双. 鲜水河断裂带全新世活动性研究进展综述[J]. 地质力学学报, 2010, 16(2): 176-188. XIONG Tan-yu, YAO Xin, ZHANG Yong-shuang. A review on study of activity of Xianshuihe fault zone since the Holocene[J]. Journal of Geomechanics, 2010, 16(2): 176-188 (in Chinese). [6] 唐渊, 王鹏, 邓红, 等. 青藏高原东缘鲜水河断裂带南东段渐新世以来主要构造岩浆事件的岩石记录[J]. 地质通报, 2022, 41(7): 1121-1143. TANG Yuan, WANG Peng, DENG Hong, et al. Petrological records of major tectono-magmatic events since Oligocene in the southeastern segment of Xianshuihe fault zone in the eastern margin of Tibetan Plateau[J]. Geological Bulletin of China, 2022, 41(7): 1121-1143 (in Chinese). [7] 白明坤, Chevalier Marie-Luce, 李海兵, 等. 鲜水河断裂带乾宁段晚第四纪走滑速率及区域强震危险性研究[J]. 地质学报, 2022, 96(7): 2312-2332. BAI Ming-kun, Chevalier Marie-Luce, LI Hai-bing, et al. Late Quaternary slip rate and earthquake hazard along the Qianning segment, Xianshuihe fault[J]. Acta Geologica Sinica, 2022, 96(7): 2312-2332 (in Chinese). [8] Bai M K, Chevalier M L, Pan J W, et al. Southeastward increase of the late Quaternary slip-rate of the Xianshuihe fault, eastern Tibet. Geodynamic and seismic hazard implications[J]. Earth and Planetary Science Letters, 2018, 485: 19-31. [9] Bai M K, Chevalier M L, Leloup P H, et al. Spatial slip rate distribution along the SE Xianshuihe fault, eastern Tibet, and earthquake hazard assessment[J]. Tectonics, 2021, 40(11): e2021TC006985. [10] 乔学军, 王琪, 杜瑞林. 川滇地区活动地块现今地壳形变特征[J]. 地球物理学报, 2004, 47(5): 805-811. QIAO Xue-jun, WANG Qi, DU Rui-lin. Characteristics of current crustal deformation of active blocks in the Sichuan-Yunnan region[J]. Chinese Journal of Geophysics, 2004, 47(5): 805-811 (in Chinese). [11] 王阎昭, 王敏, 安艳芬. 汶川、 芦山和康定地震造成的鲜水河断裂带库仑应力变化及对地震危险性的影响[J]. 大地测量与地球动力学, 2015, 35(4): 567-570. WANG Yan-zhao, WANG Min, AN Yan-fen. Coulomb stress changes along the Xianshuihe fault induced by the Wenchuan, Lushan and Kangding earthquakes and their impacts on seismic potentials[J]. Journal of Geodesy and Geodynamics, 2015, 35(4): 567-570 (in Chinese). [12] 徐晶, 邵志刚, 刘静, 等. 基于库仑应力变化分析巴颜喀拉地块东端的强震相互关系[J]. 地球物理学报, 2017, 60(10): 4056-4068. XU Jing, SHAO Zhi-Gang, LIU Jing, et al. Analysis of interaction between great earthquakes in the eastern Bayan Har block based on changes of Coulomb stress[J]. Chinese Journal of Geophysics, 2017, 60(10): 4056-4068 (in Chinese). [13] Toda S, Lin J, Meghraoui M, et al. 12 May 2008 M=7.9 Wenchuan, China, earthquake calculated to increase failure stress and seismicity rate on three major fault systems[J]. Geophysical Research Letters, 2008, 35(17): L17305. [14] Yan B, Toda S, Lin A. Coulomb stress evolution history as implication on the pattern of strong earthquakes along the Xianshuihe-Xiaojiang fault system, China[J]. Journal of Earth Science, 2018, 29(2): 427-440. [15] 徐锡伟, 闻学泽, 叶建青, 等. 汶川MS8.0地震地表破裂带及其发震构造[J]. 地震地质, 2008, 30(3): 597-629. XU Xi-wei, WEN Xue-ze, YE Jian-qing, et al. The MS8.0 Wenchuan earthquake surface ruptures and its seismogenic structure[J]. Seismology and Geology, 2008, 30(3): 597-629 (in Chinese). [16] 张勇. 震源破裂过程反演方法研究[D]. 北京: 北京大学, 2008. ZHANG Yong. Study on inversion method of source rupture process[D]. Beijing: Peking University, 2008 (in Chinese). [17] 刘成利, 郑勇, 熊熊, 等. 利用区域宽频带数据反演鲁甸MS6.5级地震震源破裂过程[J]. 地球物理学报, 2014, 57(9): 3028-3037. LIU Cheng-li, ZHENG Yong, XIONG Xiong, et al. Rupture process of MS6.5 Ludian earthquake constrained by regional broadband seismograms[J]. Chinese Journal of Geophysics, 2014, 57(9): 3028-3037 (in Chinese). [18] Zhu L P, Ben-Zion Y. Parametrization of general seismic potency and moment tensors for source inversion of seismic waveform data[J]. Geophysical Journal International, 2013, 194(2): 839-843. [19] Hsieh M C, Zhao L, Ji C, et al. Efficient inversions for earthquake slip distributions in 3D structures[J]. Seismological Research Letters, 2016, 87(6): 1342-1354. [20] Ji C, Wald D J, Helmberger D V. Source description of the 1999 Hector Mine, California, earthquake, Part Ⅰ: Wavelet domain inversion theory and resolution analysis[J]. Bulletin of the Seismological Society of America, 2002, 92(4): 1192-1207. [21] Zhu L P, Rivera L A. A note on the dynamic and static displacements from a point source in multilayered media[J]. Geophysical Journal International, 2002, 148(3): 619-627. [22] 冯静, 孔军, 康宏, 等. 2016年3月泸定地震序列重定位和震源机制研究[J]. 地球物理学进展, 2018, 33(2): 451-460. FENG Jing, KONG Jun, KANG Hong, et al. Relocation and focal mechanism of the Sichuan Luding earthquake sequence in March 2016[J]. Progress in Geophysics, 2018, 33(2): 451-460 (in Chinese). [23] 易桂喜, 龙锋, 梁明剑, 等. 2022年9月5日四川泸定MS6.8地震序列发震构造[J]. 地球物理学报, 2023, 66(4): 1363-1384. YI Gui-xi, LONG Feng, LIANG Ming-jian, et al. Seismogenic structure of the 5 September 2022 Sichuan Luding MS6.8 earthquake sequence[J]. Chinese Journal of Geophysics, 2023, 66(4): 1363-1384 (in Chinese). [24] Li Y, Zhao D, Shan X, et al. Coseismic slip model of the 2022 MW6.7 Luding (Tibet) earthquake: Pre- and post-earthquake interactions with surrounding major faults[J]. Geophysical Research Letters, 2022, 49(24): e2022GL102043. [25] 刘峡, 孙东颖, 马瑾, 等. GPS结果揭示的龙门山断裂带现今形变与受力与川滇地区其他断裂带的对比研究[J]. 地球物理学报, 2014, 57(4): 1091-1100. LIU Xia, SUN Dong-ying, MA Jin, et al. Present-day deformation and stress state of Longmenshan fault from GPS results: Comparative research on active faults in Sichuan-Yunnan region[J]. Journal of Geophysics, 2014, 57(4): 1091-1100 (in Chinese). [26] 李传友, 孙凯, 马骏, 等. 四川泸定6.8级地震鲜水河断裂带磨西段局部发起、 全段参与的一次复杂事件[J]. 地震地质, 2022, 44(6): 1648-1666. LI Chuan-you, SUN Kai, MA Jun, et al. The 2022 M6.8 Luding earthquake: A complicated event by faulting of the Moxi segment of the Xianshuihe fault zone[J]. Seismology and Geology, 2022, 44(6): 1648-1666 (in Chinese). [27] 徐泰然, 戴丹青, 杨志高, 等. 2022年9月5日四川泸定6.8级地震初步研究结果[J]. 中国地震, 2022, 38(3): 412-424. XU Tai-ran, DAI Dan-qing, YANG Zhi-gao, et al. Preliminary study of emergency production and source parameters of the M6.8 earthquake on September 05, 2022 in Luding, Sichuan Province[J]. Earthquake Research in China, 2022, 38(3): 412-424 (in Chinese). [28] Guo R, Li L, Zhang W, et al. Kinematic slip evolution during the 2022 Ms6.8 Luding, China, earthquake: Compatible with the preseismic locked patch[J]. Geophysical Research Letters, 2023, 50(5): e2023GL103164. [29] 颜丙囤, 殷海涛, 冯兵, 等. InSAR数据约束下的2022年泸定MS6.8地震震源参数及滑动分布[J]. 大地测量与地球动力学, 2023, 43(3): 221-225. YAN Bing-dun, YIN Hai-tao, FENG Bing, et al. Source parameters and slip distribution of the Luding MS6 .8 earthquake in 2022 constrained by InSAR data[J]. Journal of Geodesy and Geodynamics, 2023, 43(3): 221-225 (in Chinese). [30] 王欣, 方成勇, 唐小川, 等. 泸定MS6.8地震诱发滑坡应急评价研究[J]. 武汉大学学报(信息科学版), 2023, 48(1): 25-35. WANG Xin, FANG Cheng-yong, TANG Xiao-chuan, et al. Research on emergency evaluation of landslides induced by the Luding MS6.8 earthquake[J]. Geomatics and Information Science of Wuhan University, 2023, 48(1): 25-35 (in Chinese). [31] 郑绪君, 张勇, 汪荣江. 采用IDS方法反演强震数据确定2017年8月8日九寨沟地震的破裂过程[J]. 地球物理学报, 2017, 60(11): 4421-4430. ZHENG Xu-jun, ZHANG Yong, WANG Rong-jiang. Estimating the rupture process of the 8 August 2017 Jiuzhaigou earthquake by inverting strong-motion data with IDS method[J]. Chinese Journal of Geophysics, 2017, 60(11): 4421-4430 (in Chinese). [32] Zhang W, Zhang Z, Chen X. Three-dimensional elastic wave numerical modelling in the presence of surface topography by a collocated-grid finite-difference method on curvilinear grids[J]. Geophysical Journal International, 2012, 190(1): 358-378. [33] Amante C, Eakins B W. ETOPO1 1 arc-minute global relief model: procedures, data sources and analysis[R]. National Geophysica Data Center, NOAA Technical Memorandum NESDIS NGDC-24, 2009. [34] Yang Z J, Pang B, Dong W F, et al. Spatial pattern and intensity mapping of coseismic landslides triggered by the 2022 Luding earthquake in China[J]. Remote Sensing, 2023, 15(5): 1323. [35] 王文强, 李懿龙, 张振国, 等. 2022年9月5日泸定M6.8级地震灾害损失快速评估[J]. 中国科学: 地球科学, 2023, 53(6): 1342-1352. WANG Wen-qiang, LI Yi-long, ZHANG Zhen-guo, et al. Rapid assessment of disaster losses for M6.8 Luding earthquake on September 5, 2022[J]. Science China Earth Sciences, 2023, 53(6): 1342-1352 (in Chinese). [36] 郑荣荧, 余中元, 陈柏旭, 等. 2022年泸定MS6.8地震发震断裂的浅表结构[J]. 防灾科技学院学报, 2022, 24(4): 67-74. ZHENG Rong-ying, YU Zhong-yuan, CHEN Bai-xu, et al. Shallow surface structure of seismogenic fault of Luding, Sichuan MS6.8 earthquake in 2022[J]. Journal of Institute of Disaster Prevention, 2022, 24(4): 67-74 (in Chinese). [37] Xiao Z, Xu C, Huang Y, et al. Analysis of spatial distribution of landslides triggered by the MS6.8 Luding earthquake in China on September 5, 2022[J]. Geoenvironmental Disasters, 2023, 10(1): 1-15. [38] 卢德源, 崔作舟, 陈纪平, 等. 康定—渡口南北向构造带爆破地震测深的研究[J]. 地质论评, 1989, 35(1): 41-51. LU De-yuan, CUI Zuo-zhou, CHEN Ji-ping, et al. Application of explosion seismic sounding in the study of the crustal structure of the Kangding-Dukou meridional structural belt[J]. Geological Review, 1989, 35(1): 41-51 (in Chinese). [39] Li Y, Shan X, Gao Z, et al. Interseismic coupling, asperity distribution, and earthquake potential on major faults in southeastern Tibet[J]. Geophysical Research Letters, 2023, 50(8): e2022GL101209. [40] 苑争一, 赵静, 牛安福. 基于GNSS观测的泸定MS6.8地震震前变形演化特征研究[J]. 中国地震, 2022, 38(4): 613-621. YUAN Zheng-yi, ZHAO Jing, NIU An-fu. Pre-earthquake deformation evolution characteristics of the 2022 Luding MS6.8 earthquake based on GNSS observation[J]. Earthquake Research in China, 2022, 38(4): 613-621 (in Chinese). [41] 单新建, 李彦川, 高志钰, 等. 2022年泸定MS6.8地震同震形变特征及周边强震危险性[J]. 科学通报, 2023, 68(8): 944-953. SHAN Xin-jian, LI Yan-chuan, GAO Zhi-yu, et al. Coseismic deformation of the 2022 Luding MS6.8 earthquake and seismic potential along adjacent major faults[J]. Chinese Science Bulletin, 2023, 68(8): 944-953 (in Chinese). [42] Tang D, Ge W, Cao X. Stress triggering of the 2022 Lushan-Maerkang earthquake sequence by historical events and its implication for fault stress evolution in eastern Tibet[J]. Frontiers in Earth Science, 2023, 11: 1105394. |