[1] 陈运泰, 吴忠良, 王培德, 等. 数字地震学[M]. 北京: 地震出版社, 2000. CHEN Yun-tai, WU Zhong-liang, WANG Pei-de, et al. Digital seismology[M]. Beijing: Seismological Press, 2000 (in Chinese). [2] Allmann B P, Shearer P M. Spatial and temporal stress drop variations in small earthquakes near Parkfield, California[J]. Journal of Geophysical Research: Solid Earth, 2007, 112(B4): B04305. [3] Hardebeck J L, Aron A. Earthquake stress drops and inferred fault strength on the Hayward fault, east San Francisco Bay, California[J]. Bulletin of the Seismological Society of America, 2009, 99(3): 1801-1814. [4] 华卫, 陈章立, 郑斯华. 2008年汶川8.0级地震序列震源参数分段特征的研究[J]. 地球物理学报, 2009, 52(2): 365-371. HUA Wei, CHEN Zhang-li, ZHENG Si-hua. A study on segmentation characteristics of aftershock source parameters of Wenchuan M8.0 earthquake in 2008[J]. Chinese Journal of Geophysics, 2009, 52(2): 365-371 (in Chinese). [5] 赵翠萍, 陈章立, 华卫, 等. 中国大陆主要地震活动区中小地震震源参数研究[J]. 地球物理学报, 2011, 54(6): 1478-1489. ZHAO Cui-ping, CHEN Zhang-li, HUA Wei, et al. Study on source parameters of small to moderate earthquakes in the main seismic active regions, China mainland [J]. Chinese Journal of Geophysics, 2011, 54(6): 1478-1489 (in Chinese). [6] 唐兰兰, 李志海. 新疆天山中东段地区地震波衰减、 场地响应及震源参数研究[J]. 地震学报, 2011, 33(2): 134-142. TANG Lan-lan, LI Zhi-hai. Ground motion attenuation, site response and source parameters of earthquakes in middle and eastern range of Tianshan Mountain, Xinjiang of China[J]. Acta Seismologica Sinica, 2011, 33(2): 134-142 (in Chinese). [7] 吴微微, 苏金蓉, 魏娅玲, 等. 四川地区介质衰减、 场地响应与震级测定的讨论[J]. 地震地质, 2016, 38(4): 1005-1018. WU Wei-wei, SU Jin-rong, WEI Ya-ling, et al. Discussion on attenuation characteristics, site response and magnitude determination in Sichuan[J]. Seismology and Geology, 2016, 38(4): 1005-1018 (in Chinese). [8] 吴微微, 吴朋, 魏娅玲, 等. 川滇活动块体中-北部主要活动断裂带现今应力状态的分区特征[J]. 地球物理学报, 2017, 60(5): 1735-1745. WU Wei-wei, WU Peng, WEI Ya-ling, et al. Regional characteristics of stress state of main seismic active faults in mid-northern part of Sichuan-Yunnan block[J]. Chinese Journal of Geophysics, 2017, 60(5): 1735-1745 (in Chinese). [9] Brune J N. Tectonic stress and the spectra of seismic shear waves from earthquakes[J]. Journal of Geophysical Research, 1970, 75(26): 4997-5009. [10] 段梦乔, 赵翠萍, 周连庆, 等. 2021年5月21日云南漾濞MS6.4地震序列发震构造[J]. 地球物理学报, 2021, 64(9): 3111-3125. DUAN Meng-qiao, ZHAO Cui-ping, ZHOU Lian-qing, et al. Seismogenic structure of the 21 May 2021 MS6.4 Yunnan Yangbi earthquake sequence[J]. Chinese Journal of Geophysics, 2021, 64(9): 3111-3125 (in Chinese). [11] 雷兴林, 王志伟, 马胜利, 等. 关于2021年5月滇西漾濞MS6.4地震序列特征及成因的初步研究[J]. 地震学报, 2021, 43(3): 261-286. LEI Xing-lin, WANG Zhi-wei, MA Sheng-li, et al. A preliminary study on the characteristics and mechanism of the May 2021 MS6.4 Yangbi earthquake sequence, Yunnan, China[J]. Acta Seismologica Sinica, 2021, 43(3): 261-286 (in Chinese). [12] 易桂喜, 龙锋, 梁明剑, 等. 2022年9月5日四川泸定MS6.8地震序列发震构造[J]. 地球物理学报, 2023, 66(4): 1363-1384. YI Gui-xi, LONG Feng, LIANG Ming-jian, et al. Seismogenic structure of the 5 September 2022 Sichuan Luding MS6.8 earthquake sequence[J]. Chinese Journal of Geophysics, 2023, 66(4): 1363-1384 (in Chinese). [13] 戴丹青, 孙丽, 杨志高. 2022年9月5日四川泸定MW6.6地震破裂过程研究[J]. 地震地磁观测与研究, 2022, 43(5): 186-192. DAI Dan-qing, SUN Li, YANG Zhi-gao. Rupture process of the 5 September 2022 MW6.6 Luding earthquake in Sichuan[J]. Seismological and Geomagnetic Observation and Research, 2022, 43(5): 186-192 (in Chinese). [14] 尹凤玲, 蒋长胜, 韩立波, 等. 红河断裂带库仑应力演化及未来地震危险性估计[J]. 地球物理学报, 2018, 61(1): 183-198. YIN Feng-ling, JIANG Chang-sheng, HAN Li-bo, et al. Seismic hazard assessment for the Red River fault: Insight from Coulomb stress evolution[J]. Chinese Journal of Geophysics, 2018, 61(1): 183-198 (in Chinese). [15] 叶建庆, 张建国, 杨晶琼, 等. 红河断裂带两侧块体地震震源参数研究[J]. 地震研究, 2007, 30(3): 241-247. YE Jian-qing, ZHANG Jian-guo, YANG Jing-qiong, et al. Source parameters of blocks beside Honghe fault zone[J]. Journal of Seismological Research, 2007, 30(3): 241-247 (in Chinese). [16] 王茗册. 云南地区强震应力触发及未来地震活动性研究[D]. 武汉: 武汉大学, 2022. WANG Ming-ce. Stress triggering interaction among the large earthquakes and risk of future seismicity in Yunnan[D]. Wuhan: Wuhan University, 2022 (in Chinese). [17] 薛晨, 徐克科, 刘新奇, 等. GNSS约束的红河断裂带现今三维闭锁耦合程度及时空演变特征研究[J]. 大地测量与地球动力学, 2024, 44(1): 63-68+104. XUE Chen, XU Ke-ke, LIU Xin-qi, et al. Time-space evolution of the current three-dimensional fault locking of the Red River fault zone constrained by GNSS[J]. Journal of Geodesy and Geodynamics, 2024, 44(1): 63-68+104 (in Chinese). [18] 黄勇, 孟国杰, 吴伟伟, 等. 基于GNSS的红河断裂中段现今变形特征[J]. 大地测量与地球动力学, 2024, 44(1): 57-62. HUANG Yong, MENG Guo-jie, WU Wei-wei, et al. Present-day deformation characteristics of the central segment of the Red River fault based on GNSS[J]. Journal of Geodesy and Geodynamics, 2024, 44(1): 57-62 (in Chinese). |