[1] He X H, Zhang Y P, Shen X Z, et al. Examination of the repeatability of two MS6.4 Menyuan earthquakes in Qilian-Haiyuan fault zone (NE Tibetan Plateau) based on source parameters[J]. Physics of the Earth and Planetary Interiors, 2020, 299: 106408. [2] 单新建, 尹昊, 刘晓东, 等. 高频GNSS实时地震学与地震预警研究现状[J]. 地球物理学报, 2019, 62(8): 3043-3052. SHAN Xin-jian, YIN Hao, LIU Xiao-dong, et al. High-rate real-time GNSS seismology and early warning of earthquakes[J]. Chinese Journal of Geophysics, 2019, 62(8): 3043-3052 (in Chinese). [3] 陈运泰. 地震预测: 回顾与展望[J]. 中国科学(D辑), 2009, 39(12): 1633-1658. CHEN Yun-tai. Earthquake prediction: Retrospect and prospect[J]. Science in China (Series D), 2009, 39(12): 1633-1658 (in Chinese). [4] Brown H M, Allen R M, Hellweg M, et al. Development of the ElarmS methodology for earthquake early warning: Realtime application in California and offline testing in Japan[J]. Soil Dynamics and Earthquake Engineering, 2011, 31(2): 188-200. [5] Boore D M. Effect of baseline corrections on displacements and response spectra for several recordings of the 1999 Chi-Chi, Taiwan, earthquake[J]. Bulletin of the Seismological Society of America, 2001, 91(5): 1199-1211. [6] 孟国杰, 苏小宁, 王振, 等. 利用近场高频GPS、 强地面运动和远场地震波形数据联合反演2008年汶川MS8.0地震的震源时空破裂过程[J]. 地震, 2018, 38(2): 11-27. MENG Guo-jie, SU Xiao-ning, WANG Zhen, et al. Joint inversion for the rupture process of the 2008 Wenchuan MS8.0 earthquake from 1 Hz GPS, strong motion and teleseismic data[J]. Earthquake, 2018, 38(2): 11-27 (in Chinese). [7] 高志钰. 基于高频GNSS与合成地震的强震破裂及预警研究[D]. 北京: 中国地震局地质研究所, 2022. GAO Zhi-yu. Research on rupture and early warning of strong earthquakes based on high-rate GNSS and synthetic earthquakes[D]. Beijing: Institute of Geology, China Earthquake Administration, 2022 (in Chinese). [8] Gao Z Y, Li Y C, Shan X J, et al. Testing a prototype earthquake early warning system: A retrospective study of the 2021 MW7.4 Maduo, Tibet, earthquake[J]. Seismological Research Letters, 2022, 93(3): 1650-1659. [9] Shan X J, Li Y C, Wang Z J, et al. GNSS for quasi-real-time earthquake source determination in eastern Tibet: A prototype system toward early warning applications[J]. Seismological Research Letters, 2021, 92(5): 2988-2997. [10] Huang C C, Zhang G H, Zhao D Z, et al. Rupture process of the 2022 MW6.6 Menyuan, China, earthquake from joint inversion of accelerogram data and InSAR measurements[J]. Remote Sensing, 2022, 14(20): 5104. [11] 李煜航, 梁诗明, 郝明, 等. 2022年1月8日门源MS6.9地震同震位移场及其发震断层形变破裂特征[J]. 地球物理学报, 2023, 66(2): 589-601. LI Yu-hang, LIANG Shi-ming, HAO Ming, et al. Coseismic displacement field of Menyuan MS6.9 earthquake on January 8, 2022 and its implications for rupture characters of seismogenic faults[J]. Chinese Journal of Geophysics, 2023, 66(2): 589-601 (in Chinese). [12] 吕明哲, 陈克杰, 柴海山, 等. 联合InSAR和高频GNSS位移波形反演2022年青海门源M6.9地震同震破裂过程[J]. 地球物理学报, 2022, 65(12): 4725-4738. LÜ Ming-zhe, CHEN Ke-jie, CHAI Hai-shan, et al. Joint inversion of InSAR and high-rate GNSS displacement waveforms for the rupture process of the 2022 Qinghai Menyuan M6.9 earthquake[J]. Chinese Journal of Geophysics, 2022, 65(12): 4725-4738 (in Chinese). [13] Wang R, Schurr B D, Milkereit C, et al. An improved automatic scheme for empirical baseline correction of digital strong-motion records[J]. Bulletin of the Seismological Society of America, 2011, 101(5): 2029-2044. [14] 单新建, 李彦川, 高志钰, 等. 2022年泸定MS6.8地震同震形变特征及周边强震危险性[J]. 科学通报, 2023, 68(8): 944-953. SHAN Xin-jian, LI Yan-chuan, GAO Zhi-yu, et al. Coseismic deformation of the 2022 Luding MS6.8 earthquake and seismic potential along adjacent major faults[J]. Chinese Science Bulletin, 2023, 68(8): 944-953 (in Chinese). [15] 刘晓东. 强震动数据在地震P波预警中的应用[D]. 青岛: 中国石油大学(华东), 2019. LIU Xiao-dong. Application of strong-motion data in earthquake P-wave early warning[D]. Qingdao: China University of Petroleum (East China), 2019 (in Chinese). [16] 李振洪, 韩炳权, 刘振江, 等. InSAR数据约束下2016年和2022年青海门源地震震源参数及其滑动分布[J]. 武汉大学学报(信息科学版), 2022, 47(6): 887-897. LI Zhen-hong, HAN Bing-quan, LIU Zhen-jiang, et al. Source parameters and slip distributions of the 2016 and 2022 Menyuan, Qinghai earthquakes constrained by InSAR observations[J]. Geomatics and Information Science of Wuhan University, 2022, 47(6): 887-897 (in Chinese). [17] Geng J H, Chen X Y, Pan Y X, et al. PRIDE PPP-AR: An open-source software for GPS PPP ambiguity resolution[J]. GPS Solutions, 2019, 23(4): 1-10. [18] Geng J H, Zhang Q Y, Li G C, et al. Observable-specific phase biases of Wuhan multi-GNSS experiment analysis center’s rapid satellite products[J]. Satellite Navigation, 2022, 3(3): 91-105. [19] 方荣新. 高采样率GPS数据非差精密处理方法及其在地震学中的应用研究[D]. 武汉: 武汉大学, 2010. FANG Rong-xin. High-rate GPS data non-difference precise processing and its application on seismology[D]. Wuhan: Wuhan University, 2010 (in Chinese). [20] 张小红, 李星星, 李盼. GNSS精密单点定位技术及应用进展[J]. 测绘学报, 2017, 46(10): 1399-1407. ZHANG Xiao-hong, LI Xing-xing, LI Pan. Review of GNSS PPP and its application[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10): 1399-1407 (in Chinese). [21] Li Y J, Liu S F, Chen L W, et al. Mechanism of crustal deformation in the Sichuan-Yunnan region, southeastern Tibetan Plateau: Insights from numerical modeling[J]. Journal of Asian Earth Sciences, 2017, 146: 142-151. [22] Li Z C, Zang J F, Fan S J, et al. Real-time source modeling of the 2022 MW6.6 Menyuan, China earthquake with high-rate GNSS observations[J]. Remote Sensing, 2022, 14(21): 5378. [23] 李瑜, 刘静, 梁宏, 等. 全球定位系统测定的尼泊尔MW7.8级地震同震位移[J]. 科学通报, 2015, 60(36): 3606-3616. LI Yu, LIU Jing, LIANG Hong, et al. Co-seismic displacement field associated with the 25 April, 2015 MW7.8 Nepal earthquake recorded by Global Positioning System[J]. Chinese Science Bulletin, 2015, 60(36): 3606-3616 (in Chinese). [24] Boore D M, Stephens C D, Joyner W B. Comments on baseline correction of digital strong-motion data: Examples from the 1999 Hector Mine, California, earthquake[J]. Bulletin of the Seismological Society of America, 2002, 92(4): 1543-1560. [25] Lin Y Z, Zong Z H, Tian S Z, et al. A new baseline correction method for near-fault strong-motion records based on the target final displacement[J]. Soil Dynamics and Earthquake Engineering, 2018, 114: 27-37. [26] Rosen P A, Gurrola E, Sacco G F, et al. The InSAR scientific computing environment[C]. EUSAR 2012: 9th European conference on synthetic aperture radar. VDE, 2012: 730-733. [27] Farr T G, Rosen P A, Caro E, et al. The shuttle radar topography mission[J]. Reviews of Geophysics, 2007, 45(2): RG2004. [28] Goldstein R M, Werner C L. Radar interferogram filtering for geophysical applications[J]. Geophysical Research Letters, 1998, 25(21): 4035-4038. [29] Pepe A, Lanari R. On the extension of the minimum cost flow algorithm for phase unwrapping of multitemporal differential SAR interferograms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(9): 2374-2383. [30] Yu C, Li Z H, Penna N T, et al. Generic atmospheric correction model for interferometric synthetic aperture radar observations[J]. Journal of Geophysical Research: Solid Earth, 2018, 123(10): 9202-9222. [31] Jónsson S, Zebker H, Segall P, et al. Fault slip distribution of the 1999 MW7.1 Hector Mine, California, earthquake, estimated from satellite radar and GPS measurements[J]. Bulletin of the Seismological Society of America, 2002, 92(4): 1377-1389. [32] 潘家伟, 李海兵, Marie-Luce Chevalier, 等. 2022年青海门源MS6.9地震地表破裂带及发震构造研究[J]. 地质学报, 2022, 96(1): 215-231. PAN Jia-wei, LI Hai-bing, Marie-Luce Chevalier, et al. Coseismic surface rupture and seismogenic structure of the 2022 MS6.9 Menyuan earthquake, Qinghai Province, China[J]. Acta Geologica Sinica, 2022, 96(1): 215-231 (in Chinese). [33] Fan L P, Li B R, Liao S R, et al. High-precision relocation of the aftershock sequence of the January 8, 2022, MS6.9 Menyuan earthquake[J]. Earthquake Science, 2022, 35(2): 138-145. [34] 李智敏, 盖海龙, 李鑫, 等. 2022年青海门源MS6.9级地震发震构造和地表破裂初步调查[J]. 地质学报, 2022, 96(1): 330-335. LI Zhi-min, GAI Hai-long, LI Xin, et al. Seismogenic fault and coseismic surface deformation of the Menyuan MS6.9 earthquake in Qinghai, China[J]. Acta Geologica Sinica, 2022, 96(1): 330-335 (in Chinese). [35] Melgar D, Bock Y. Kinematic earthquake source inversion and tsunami runup prediction with regional geophysical data[J]. Journal of Geophysical Research: Solid Earth, 2015, 120(5): 3324-3349. [36] Zhu L P, Rivera L A. A note on the dynamic and static displacements from a point source in multilayered media[J]. Geophysical Journal International, 2002, 148(3): 619-627. [37] Wang C S, Ding X L, Li Q C, et al. Adaptive regularization of earthquake slip distribution inversion[J]. Tectonophysics, 2016, 675: 181-195. [38] Melgar Moctezuma D. Seismogeodesy and rapid earthquake and tsunami source assessment[D]. California: University of California, San Diego, 2014. [39] Akaike H. Likelihood and the Bayes procedure[M]. New York: Springer New York, 1998. [40] Fukahata Y, Nishitani A, Matsu’ura M. Geodetic data inversion using ABIC to estimate slip history during one earthquake cycle with viscoelastic slip-response functions[J]. Geophysical Journal International, 2004, 156(1): 140-153. [41] 余鹏飞, 陈威, 乔学军, 等. 基于多源SAR数据的2022年门源MS6.9地震同震破裂模型反演研究[J]. 武汉大学学报(信息科学版), 2022, 47(6): 898-906. YU Peng-fei, CHEN Wei, QIAO Xue-jun, et al. Slip model of the 2022 Menyuan MS6.9 earthquake constrained by mulit-source SAR data[J]. Geomatics and Information Science of Wuhan University, 2022, 47(6): 898-906 (in Chinese). [42] Wessel P, Smith W H F, Scharroo R, et al. Generic mapping tools: Improved version released[J]. Eos, Transactions American Geophysical Union, 2013, 94(45): 409-410. |