欢迎访问《地震》,

地震 ›› 2025, Vol. 45 ›› Issue (2): 180-192.doi: 10.12196/j.issn.1000-3274.2025.02.012

• • 上一篇    下一篇

基于InSAR形变数据的白格滑坡孔压变化致灾动力学模拟研究

蔡云菲1, 谷洪彪1, 王明阳2, 杨韬1, 鲁明贵1   

  1. 1.南京工业大学交通运输学院, 江苏 南京 210000;
    2.清华大学自动化系, 北京 100084
  • 收稿日期:2025-04-11 接受日期:2025-04-20 发布日期:2025-09-05
  • 通讯作者: 谷洪彪, 教授。 E-mail: hongbiaosw@126.com
  • 作者简介:蔡云菲(2001-), 江苏苏州人, 在读硕士生, 主要从事人工智能与防灾减灾研究。 E-mail: Chen15106111356@163.com
  • 基金资助:
    国家自然科学基金项目(42372282)

Study on Failure Dynamics Simulation of the Baige Landslide Triggered by Pore-pressure Variation Using InSAR Deformation Data

CAI Yun-fei1, GU Hong-biao1, WANG Ming-yang2, YANG Tao1, LU Ming-gui1   

  1. 1. School of Transportation Science and Engineering, Nanjing Tech University, Nanjing 210000, China;
    2. Department of Automation, Tsinghua University, Beijing 100084, China
  • Received:2025-04-11 Accepted:2025-04-20 Published:2025-09-05

摘要: 山体滑坡是常见的地质灾害类型, 主要受到降雨、 地震活动和岩土结构变化等因素的影响, 特别是在强降雨条件下, 滑坡的发生频率和破坏性显著增加。 孔隙水压力的动态变化被认为是滑坡发生和发展的关键驱动因素之一。 本研究聚焦于孔隙水压变化对滑坡致灾的影响, 以白格滑坡为典型案例, 通过Sentinel-1A升轨D-InSAR技术对滑坡发生后区域潜在位移形变进行监测, 探讨孔隙水压变化滑坡动力学的驱动作用。 同时通过构建包含岩土体渗透系数、 抗剪强度参数及地质构造特征的三维地质力学模型, 采用FLAC3D对滑坡致灾过程进行动力学分析, 定量表征强降雨入渗条件下非饱和渗流、 孔隙水压力与抗剪强度参数之间的动态响应关系。 研究表明, 坡脚阻滑区孔隙水压力异常升高导致滑带剪切强度减弱, 触发变形区扩展与位移突变, 与InSAR形变监测结果具有显著相关性, 最终形成滑坡动力失稳的链式反应。 该研究为强降雨区高位滑坡灾害的动力学预警与风险评估提供了量化分析模型和理论支撑。

关键词: 2018年白格滑坡, 孔隙水压力, D-InSAR, 动力学模拟

Abstract: Landslides are common geological hazards that are primarily influenced by rainfall, seismic activity, and changes in the geological structure of soil and rock. In particular, heavy rainfall significantly increases both the frequency and destructiveness of landslides. The dynamic variation of pore water pressure is considered one of the key driving factors behind the occurrence and development of landslides. This study focuses on the impact of pore water pressure variation on landslide disasters, using the 2018 Baige landslide as a typical case. Sentinel-1A ascending orbit D-InSAR technology was employed to monitor potential surface displacement and deformation in the region following the landslide, providing insight into how pore water pressure changes drive landslide dynamics. Additionally, a three-dimensional geomechanical model was developed, incorporating parameters such as the permeability coefficient, shear strength, and geological structure of the rock and soil mass. FLAC3D was used to conduct dynamic simulations of the landslide, quantitatively characterizing the relationships between unsaturated seepage, pore water pressure, and shear strength under heavy rainfall infiltration conditions. The results show that an abnormal increase in pore water pressure in the toe resistance zone at the foot of the slope weakens the shear strength of the slip surface, triggering the expansion of the deformation zone and a sudden increase in displacement. This process shows strong correlation with the deformation patterns obtained from InSAR monitoring, and ultimately leads to a chain reaction of dynamic instability in the landslide. This study provides a quantitative analytical model and theoretical support for dynamic early warning and risk assessment of high-altitude landslide disasters in areas with heavy rainfall.

Key words: 2018 Baige landslide, Pore pressure, D-InSAR, Dynamic simulation

中图分类号: