欢迎访问《地震》,

地震 ›› 2025, Vol. 45 ›› Issue (2): 211-228.doi: 10.12196/j.issn.1000-3274.2025.02.014

• 地震监测预报60周年专栏 • 上一篇    

基于长短期记忆神经网络的鲁04井水位异常变化分析

刘凯1, 陈其峰1, 张军2, 孙豪3, 王西宝4   

  1. 1.山东省地震局聊城地震监测中心站, 山东 聊城 252000;
    2.山东省地震局菏泽地震监测中心站, 山东 菏泽 274000;
    3.山东省地震局烟台地震监测中心站, 山东 烟台 264000;
    4.山东省地震局临沂地震监测中心站, 山东 临沂 276000
  • 收稿日期:2025-04-03 发布日期:2025-09-05
  • 通讯作者: 陈其峰, 高级工程师。 E-mail: qifeng1974@163.com
  • 作者简介:刘凯(1988-), 男, 山东泰安人, 工程师, 主要从事地震地下流体监测研究。 E-mail: LK8822@126.com

Analysis of Anomalous Water Level Variations in Lu-04 Well Based on Long Short-Term Memory Neural Network

LIU Kai1, CHEN Qi-feng1, ZHANG Jun2, SUN Hao3, WANG Xi-bao4   

  1. 1. Liaocheng Earthquake Monitoring Central Station, Shandong Earthquake Agency, Liaocheng 252000, China;
    2. Heze Earthquake Monitoring Central Station, Shandong Earthquake Agency, Heze 274000, China;
    3. Yantai Earthquake Monitoring Central Station, Shandong Earthquake Agency, Yantai 264000, China;
    4. Linyi Earthquake Monitoring Central Station, Shandong Earthquake Agency, Linyi 276000, China
  • Received:2025-04-03 Published:2025-09-05

摘要: 基于长短期记忆(LSTM)神经网络, 利用鲁04井2014—2023年的井水位、 气压、 降水数据及固体潮参数, 分析了2023年8月6日平原M5.5地震前井水位的异常变化及其响应机制。 结果显示, ① 多变量LSTM模型对预测集2022年井水位的预测均方误差(MSE)约为0.0007, 决定系数(R2)约为0.9978, 表明模型对鲁04井水位非线性时序特征具有较好的捕捉能力; ② 模型预测偏差在震前6个月呈现增大趋势, 震前1个月加速上升, 结合潮汐因子在震前1个月升至异常上限(均值+2倍标准差), 表明含水层水文地质条件可能发生变化; ③ 发震当月, 相位差从震前正负波动的混合流动模式突变为正向峰值的垂向流主导模式, 揭示了断层破裂过程中含水系统渗流状态的调整。

关键词: LSTM神经网络, 井水位预测, 固体潮, 地震前兆

Abstract: Based on Long Short-Term Memory (LSTM) neural network, anomalous variations of water level in Lu-04 well and response mechanisms before the M5.5 Pingyuan earthquake on August 6, 2023, were analyzed using well water level, air pressure, precipitation data, and solid tide parameters (2014—2023). The results show: ① The multivariate LSTM model achieved a mean squared error (MSE) of 0.0007 and a coefficient of determination (R2) of 0.9978 when predicting the well water level in 2022, indicating that the model has a good ability to capture the nonlinear time series characteristics of the Lu-04 well water level. ② The prediction bias of the model showed an increasing trend in the six months pre-earthquake, with a sharp rise in the month before the earthquake. Concurrently, the tidal factor surged to an abnormal upper limit (mean value twice the standard deviation) in the month before the earthquake, suggesting that the hydrological geological conditions of the aquifer may have changed. ③ In the month of the earthquake, the phase difference increased significantly from a mixed flow pattern (with positive-negative fluctuations) before the earthquake to a vertical flow-dominated pattern at a positive peak, revealing adjustments in the seepage state of the aquifer system during the fault rupture process.

Key words: LSTM neural network, Well water level prediction, Solid tide, Earthquake precursors

中图分类号: