[1] 车用太, 刘五洲, 鱼金子. 地壳流体与地震活动关系及其在强震预测中的意义[J]. 地震地质, 1998, 20(4): 144-149. CHE Yong-tai, LIU Wu-zhou, YU Jin-zi. The relationship between crustal fluids and major earthquakes and its implications for earthquake prediction[J]. Seismology and Geology, 1998, 20(4): 144-149 (in Chinese). [2] Griffin S, Horton T W, Oze C. Origin of warm springs in Banks Peninsula, New Zealand[J]. Applied Geochemistry, 2017, 86: 1-12. [3] 王万丽, 周晓成, 石宏宇, 等. 云南省南汀河断裂带温泉水文地球化学特征[J]. 地震, 2022, 42(2): 14-32. WANG Wan-li, ZHOU Xiao-cheng, SHI Hong-yu, et al. Hydrogeochemical characteristics of hot springs in Nantinghe fault zone, Yunnan Province[J]. Earthquake, 2022, 42(2): 14-32 (in Chinese). [4] Skelton A, Andrén M, Kristmannsdóttir H, et al. Changes in groundwater chemistry before two consecutive earthquakes in Iceland[J]. Nature Geoscience, 2014, 7(10): 752-756. [5] 杜建国, 仵柯田, 孙凤霞. 地震成因综述[J]. 地学前缘, 2018, 25(4): 255-267. DU Jian-guo, WU Ke-tian, SUN Feng-xia. Earthquake generation: A review[J]. Earth Science Frontiers, 2018, 25(4): 255-267 (in Chinese). [6] Walraevens K, Bakundukize C, Mtoni Y E, et al. Understanding the hydrogeochemical evolution of groundwater in Precambrian basement aquifers: A case study of Bugesera region in Burundi[J]. Journal of Geochemical Exploration, 2018, 188(3): 24-42. [7] Liu W, Guan L F, Liu Y, et al. Fluid geochemistry and geothermal anomaly along the Yushu-Ganzi-Xianshuihe fault system, eastern Tibetan Plateau: Implications for regional seismic activity[J]. Journal of Hydrology, 2022, 607: 127554. [8] 王昱文, 周晓成, 何苗, 等. 四川稻城地区温泉流体地球化学特征及地震活动性分析[J]. 沉积与特提斯地质, 2023, 43(2): 373-387. WANG Yu-wen, ZHOU Xiao-cheng, HE Miao, et al. Hydrogeochemical and seismic activity characteristics of hot springs in Daocheng area, Sichuan Province[J]. Sedimentary Geology and Tethyan Geology, 2023, 43(2): 373-387 (in Chinese). [9] Smeraglia L, Berra F, Billi A, et al. Origin and role of fluids involved in the seismic cycle of extensional faults in carbonate rocks[J]. Earth and Planetary Science Letters, 2016, 450: 292-305. [10] Diamond L W, Wanner C, Waber H N. Penetration depth of meteoric water in orogenic geothermal systems[J]. Geology, 2018, 46(12): 1063-1066. [11] Tsunogai U, Wakita H. Precursory chemical changes in ground water: Kobe earthquake, in Japan[J]. Science, 1995, 269(5220): 61-63. [12] Pierotti F, Botti F, Bracaloni S, et al. Hydrogeochemistry of Magra valley (Italy) aquifers: Geochemical background of an area investigated for seismic precursors[J]. Procedia Earth and Planetary Science, 2013, 7: 697-700. [13] Zhou X C, Chen Z, Cui Y J, et al. Gas geochemistry of the hot spring in the Litang fault zone, Southeast Tibetan Plateau[J]. Applied Geochemistry, 2017, 37(9): 17-26. [14] 周晓成. 汶川MS8.0地震后川西地区的气体地球化学[D]. 合肥: 中国科学技术大学, 2011. ZHOU Xiao-cheng. Gas geochemistry in western Sichuan related to 12 May 2008 Wenchuan MS8.0 earthquake[D]. Hefei: University of Science and Technology of China, 2011 (in Chinese). [15] 陈志. 汶川地震后川西地区温泉水地球化学研究[D]. 合肥: 中国科学技术大学, 2014. CHEN Zhi. Hydrogeochemistry of the hot springs in western Sichuan Province, Southwestern China after the Wenchuan MS8.0 earthquake[D]. Hefei: University of Science and Technology of China, 2014 (in Chinese). [16] 张磊, 刘耀炜, 任宏微, 等. 水化学分析方法在地下水异常核实中的应用[J]. 地震, 2019, 39(1): 29-38. ZHANG Lei, LIU Yao-wei, REN Hong-wei, et al. Application of hydrochemistry to the verification of groundwater anomalies[J]. Earthquake, 2019, 39(1): 29-38 (in Chinese). [17] 方震, 张彬, 李军辉, 等. 庐江地热温泉区活动断裂土壤气氡(Rn)释放对环境的影响[J]. 环境化学, 2019, 38(8): 1906-1911. FANG Zhen, ZHANG Bin, LI Jun-hui, et al. Environment impact of Rn degassing from soil gas in the active faults of the area of Lujiang hot spring[J]. Environmental Chemistry, 2019, 38(8): 1906-1911 (in Chinese). [18] 方震, 黄显良, 汪小厉, 等. 庐江地热温泉1号井水氡远场强震震后效应及机理分析[J]. 地震学报, 2020, 42(6): 732-744. FANG Zhen, HUANG Xian-liang, WANG Xiao-li, et al. The post seismic effect of far-field strong earthquakes of water radon and its mechanism analysis for L01 well of Lujiang geothermal hot spring[J]. Acta Seismologica Sinica, 2020, 42(6): 732-744 (in Chinese). [19] 高维明, 郑朗荪. 郯庐断裂带的活断层分段与潜在震源区的划分[J]. 中国地震, 1991, 7(4): 89-93. GAO Wei-ming, ZHENG Lang-sun. Active fault segmentation and the identification of potential seismic zones along the Tanlu fault[J]. Earthquake Research in China, 1991, 7(4): 89-93 (in Chinese). [20] 李志平, 朱方保, 汪世仙, 等. 热水井开采对庐江地震台流体观测影响分析[J]. 地震地磁观测与研究, 2010, 31(1): 91-96. LI Zhi-ping, ZHU Fang-bao, WANG Shi-xian, et al. Influence of exploitation of hot water well on the fluid dynamics in Lujiang seismic station[J]. Seismological and Geomagnetic Observation and Research, 2010, 31(1): 91-96 (in Chinese). [21] 宋传中, 王国强, 朱光, 等. 郯庐断裂带桐城—庐江段的构造特征及演化[J]. 安徽地质, 1998, 8(4): 37-40. SONG Chuan-zhong, WANG Guo-qiang, ZHU Guang, et al. Tectonic characteristics and evolution of the Tongcheng-Lujiang segment of the Tan-Lu fault zone[J]. Geology of Anhui, 1998, 8(4): 37-40 (in Chinese). [22] 朱光, 王道轩, 刘国生, 等. 郯庐断裂带的伸展活动及其动力学背景[J]. 地质科学, 2001, 36(3): 269-278. ZHU Guang, WANG Dao-xuan, LIU Guo-sheng, et al. Extensional activities along the Tan-Lu fault zone and its geodynamic setting[J]. Chinese Journal of Geology, 2001, 36(3): 269-278 (in Chinese). [23] 韩璞璞. 以城市防洪排涝为目的的庐江县城降水特征分析[D]. 呼和浩特: 内蒙古农业大学, 2012. HAN Pu-pu. Analysis of precipitation characteristics with respect to the urban flood control and drainage in Lujiang county[D]. Hohhot: Inner Mongolia Agricultural University, 2012 (in Chinese). [24] 钱会, 王晓娟, 李便琴. 地下水系统平衡化学模型的研究现状及发展方向[J]. 地球科学与环境学报, 2005, 27(1): 59-64. QIAN Hui, WANG Xiao-juan, LI Bian-qin. Status and development trend in the study of equilibrium chemical models for groundwater systems[J]. Journal of Earth Sciences and Environment, 2005, 27(1): 59-64 (in Chinese). [25] 姜凌. 干旱区绿洲地下水水化学成分形成及演化机制研究以阿拉善腰坝绿洲为例[D]. 西安: 长安大学, 2009. JIANG Ling. Study on hydrochemical composition formation and evolution mechanisms of groundwater in oasis of arid areas: A case of Yaoba Oasis in Alashan[D]. Xi’an: Chang’an University, 2009 (in Chinese). [26] 王莉莉. 变异条件下黄河下游影响带(河南段)黄河地下水循环演变过程研究[D]. 郑州: 华北水利水电大学, 2021. WANG Li-li. Study on the evolution process of Yellow River: Groundwater cycling in the Yellow River’s lower reach impact zone (Henan section) under variant conditions[D]. Zhengzhou: North China University of Water Resources and Electric Power, 2021 (in Chinese). [27] Craig H. Isotopic variations in meteoric waters[J]. Science, 1961, 133(3465): 1702-1703. [28] 王涛, 张洁茹, 刘笑, 等. 南京大气降水氧同位素变化及水汽来源分析[J]. 水文, 2013, 33(4): 25-31. WANG Tao, ZHANG Jie-ru, LIU Xiao, et al. Variations of stable isotopes in precipitation and water vapor sources in Nanjing area[J]. Journal of China Hydrology, 2013, 33(4): 25-31 (in Chinese). [29] Hoke L, Lamb S, Hilton D R, et al. Southern limit of mantle-derived geothermal helium emissions in Tibet: Implication for lithospheric structure[J]. Earth and Planetary Science Letters, 2000, 180(3): 297-308. [30] 王云, 赵慈平, 刘峰, 等. 小江断裂带及邻近地区温泉地球化学特征与地震活动关系研究[J]. 地震研究, 2014, 37(2): 228-243. WANG Yun, ZHAO Ci-ping, LIU Feng, et al. Research on relationship between geochemical characteristics of thermal springs and seismic activity in Xiaojiang fault zone and its adjacent area[J]. Journal of Seismological Research, 2014, 37(2): 228-243 (in Chinese). [31] 周晓成, 杜建国, 陈志, 等. 地震地球化学研究进展[J]. 矿物岩石地球化学通报, 2012, 31(4): 340-346. ZHOU Xiao-cheng, DU Jian-guo, CHEN Zhi, et al. Advance review of seismic geochemistry[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2012, 31(4): 340-346 (in Chinese). [32] 徐永昌. 我国80年代气体地球化学研究[J]. 沉积学报, 1992, 10(3): 57-69. XU Yong-chang. A review of researches on gas geochemistry in China’s 80s[J]. Acta Sedimentologica Sinica, 1992, 10(3): 57-69 (in Chinese). [33] 杜建国, 刘丛强. 同位素地球化学在地震研究方面的作用[J]. 地震, 2003, 23(2): 99-107. DU Jian-guo, LIU Cong-qiang. Isotopic-geochemical application to earthquake prediction[J]. Earthquake, 2003, 23(2): 99-107 (in Chinese). [34] Ballentine C J, O’Nions R K. The nature of mantle neon contributions to Vienna Basin hydrocarbon reservoirs[J]. Earth and Planetary Science Letters, 1992, 113(92): 553-567. [35] Kendall C, Coplen T B. Distribution of oxygen-18 and deuterium in river waters across the United States[J]. Hydrological Processes, 2010, 15(7): 1363-1393. [36] 任继周. 云南省水富县大峡谷温泉岩溶承压水补给量分析计算[J]. 水资源保护, 2010, 26(2): 66-69. REN Ji-zhou. Analysis and calculation of karst confined water recharge: A case study of thermal spring in Daxiagu in Shuifu County, Yunnan Province[J]. Water Resources Protection, 2010, 26(2): 66-69 (in Chinese). [37] 王恒纯. 同位素水文地质概论[M]. 北京: 地质出版社, 1991. WANG Heng-chun. Introduction to isotope hydrogeology[M]. Beijing: Geological Publishing Press, 1991 (in Chinese). [38] Giggenbach W F, Minissale A A, Scandiffio G. Isotopic and chemical assessment of geothermal potential of the Colli Albani area, Latium region, Italy[J]. Applied Geochemistry, 1988, 3(5): 475-486. [39] 石宏宇, 王万丽, 周晓成, 等. 四川石棉公益海温泉水文地球化学特征[J]. 地震, 2021, 41(1): 93-115. SHI Hong-yu, WANG Wan-li, ZHOU Xiao-cheng, et al. Hydrogeochemical characteristics of Gongyihai hot spring, in Shimian County, Sichuan Province[J]. Earthquake, 2021, 41(1): 93-115 (in Chinese). [40] 颜玉聪, 周晓成, 李静超, 等. 2020年新疆于田MS6.4地震温泉水文地球化学异常特征研究[J]. 地震, 2021, 41(2): 113-128. YAN Yu-cong, ZHOU Xiao-cheng, LI Jing-chao, et al. Hydrogeochemical anomaly characteristics of hot springs around the 2020 Yutian MS6.4 earthquake, Xinjiang[J]. Earthquake, 2021, 41(2): 113-128 (in Chinese). [41] 王文梅, 徐子东, 欧阳正平, 等. 海南省三亚市崖城地热田地球化学特征及成因分析[J]. 工程勘察, 2017, 45(10): 38-45. WANG Wen-mei, XU Zi-dong, OUYANG Zheng-ping, et al. Analysis of geochemical characteristics and formation reasons of Yacheng geothermal field in Sanya of Hainan Province[J]. Geotechnical Investigation & Surveying, 2017, 45(10): 38-45 (in Chinese). [42] 周训, 金晓媚, 梁四海, 等. 地下水科学专论(第二版)[M]. 北京: 地质出版社, 2017. ZHOU Xun, JIN Xiao-mei, LIANG Si-hai, et al. Special topics in groundwater science (second edition)[M]. Beijing: Geological Publishing House, 2017 (in Chinese). [43] 王皓, 柴蕊. 地热温标在地热系统中的应用研究[J]. 河北工程大学学报(自然科学版), 2009, 26(3): 54-58. WANG Hao, CHAI Rui. Application of geothermometers in the geothermal system[J]. Journal of Hebei University of Engineering (Natural Science Edition), 2009, 26(3): 54-58 (in Chinese). [44] 汪万红, 张慧, 苏鹤军. 秦岭北缘断裂带温泉水循环深度与地震活动性的关系研究[J]. 西北地震学报, 2008, 30(1): 36-41. WANG Wan-hong, ZHANG Hui, SU He-jun. Research on the relation of circulation depth of hot spring water with seismicity in the northern margin fault zone of Qinlin[J]. Northwestern Seismological Journal, 2008, 30(1): 36-41 (in Chinese). [45] Fournier R O, Truesdell A H. Geochemical indicators of subsurface temperature—Part Ⅱ, estimation of temperature and fraction of hot water mixed with cold water[J]. Journal of Research of U. S. Geological Survey, 1974, 2(3): 263-270. [46] Fournier R O, Potter R W II. A revised and expanded silica (quartz) geothermometer[J]. Bulletin Geothermal Resources Council, 1982, 11(6): 3-12. [47] 颜玉聪, 周晓成, 朱成英, 等. 2020年新疆伽师MS6.4地震前后伽师地区温泉水文地球化学特征[J]. 地震研究, 2022, 45(2): 229-240. YAN Yu-cong, ZHOU Xiao-cheng, ZHU Cheng-ying, et al. Hydrogeochemical features of the hot spring water before and after the 2020, Jiashi, Xinjiang MS6.4 earthquake[J]. Journal of Seismological Research, 2022, 45(2): 229-240 (in Chinese). [48] Asta M P, Gimeno M J, Auqué L F, et al. Hydrochemistry and geothermometrical modeling of low-temperature Panticosa geothermal system (Spain)[J]. Journal of Volcanology and Geothermal Research, 2012, 235/236: 84-95. [49] 李状, 周训, 方斌, 等. 安徽大别山温泉区的水化学与同位素特征及成因[J]. 地质通报, 2022, 41(9): 1687-1697. LI Zhuang, ZHOU Xun, FANG Bin, et al. Hydrochemical and isotopic characteristics and formation of the hot spring in the Dabie Mountain area, Anhui Province[J]. Geological Bulletin of China, 2022, 41(9): 1687-1697 (in Chinese). [50] Piper A M. A graphic procedure in the geochemical interpretation of water analyses[J]. Eos, Transactions, American Geophysical Union, 1944, 25(6): 914-928. [51] 张春山, 张业成, 吴满路. 南北地震带南段水文地球化学特征及其与地震的关系[J]. 地质力学学报, 2003, 9(1): 21-30. ZHANG Chun-shan, ZHANG Ye-cheng, WU Man-lu. Study on relationship between earthquake and hydro-geochemistry of groundwater in southern part of north-south earthquake belt in China[J]. Journal of Geomechanics, 2003, 9(1): 21-30 (in Chinese). [52] Arnórsson S, Andrésdóttir A. Processes controlling the distribution of boron and chlorine in natural waters in Iceland[J]. Geochimica et Cosmochimica Acta, 1995, 59(20): 4125-4146. [53] 李营, 方震, 张晨蕾, 等. 地震流体地球化学短临预测研究进展与展望[J]. 地震地质, 2023, 45(3): 593-621. LI Ying, FANG Zhen, ZHANG Chen-lei, et al. Research progress and prospect of seismic fluid geochemistry in short-imminent earthquake prediction[J]. Seismology and Geology, 2023, 45(3): 593-621 (in Chinese). [54]Favara R, Grassa F, Inguaggiato S, et al. Hydrogeochemistry and stable isotopes of thermal springs: earthquake-related chemical changes along Belice fault (Western Sicily)[J]. Applied Geochemistry, 2001, 16(1): 1-17. [55]Skelton A, Andrén M, Kristmannsdóttir H, et al. Changes in groundwater chemistry before two consecutive earthquakes in Iceland[J]. Nature Geoscience, 2014, 7(10): 752-756. [56] Reddy D V, Kumar D, Rao N P. Long-term hydrochemical earthquake precursor studies at the Koyna-Warna reservoir site in western India[J]. Journal of the Geological Society of India, 2017, 90(6): 720-727. [57] Sano Y, Onda S, Kagoshima T, et al. Groundwater oxygen anomaly related to the 2016 Kumamoto earthquake in Southwest Japan[J]. Proceedings of the Japan Academy Ser B Physical and Biological Sciences, 2020, 96(7): 322-334. [58] 周启超, 蒋雨函, 高小其, 等. 同位素地球化学在地震监测预测研究中的应用进展[J]. 中国地震, 2023, 39(2): 243-259. ZHOU Qi-chao, JIANG Yu-han, GAO Xiao-qi, et al. Recent development of isotope geochemical in earthquake monitoring and forecasting[J]. Earthquake Research in China, 2023, 39(2): 243-259 (in Chinese). |