[1] Zhou X, Sun W K, Zhao B, et al. Geodetic observations detected co-seismic displacements and gravity changes caused by the Tohoku-Oki earthquake (MW=9.0)[J]. J Geophys Res, 2012, 117(B5): 81-88. [2] 杨少敏, 聂兆生, 贾志革, 等. GPS解算的日本MW9.0级地震的远场同震地表位移[J]. 武汉大学学报: 信息科学版, 2011, 36(11): 1336-1339. [3] 殷海涛, 甘卫军, 黄蓓, 等. 日本M9.0级巨震对山东地区地壳活动的影响研究[J]. 地球物理学报, 2013, 56(5): 1497-1505. [4] Segall P, Davis J L. GPS applications for geodynamics and earthquake studies[J]. Ann Rev Earth Planet Sci, 1997, 25(1): 301-336. [5] Hsu, Y J, Simous M, Aviyac J P, et al. Frictional afterslip following the 2005 Nias-Simeulue Earthquake, Sumatra[J]. Science, 2006, 312(5782): 1921-1926. [6] Freed A M. Afterslip (and only afterslip) following the 2004 Parkfield, California earthquake[J]. Geophys Res Lett, 2007, 34(6): 160-166. [7] Bürgmann R, Dresen G. Rheology of the lower crust and upper mantle: evidence from rock mechanics, geodesy, and field observations[J]. Ann Rev Earth Planet Sci, 2008, 36(36): 531-567. [8] Bruhat L, Barbot S, Avouac J P. Evidence for postseismic deformation of the lower crust following the 2004 MW6.0 Parkfield earthquake[J]. J Geophys Res, 2011, 116(B8): 114-123. [9] Hoechner A, Sobolev S V, Einarsson I, et al. Investigation on afterslip and steady state and transient rheology based on postseismic deformation and geoid change caused by the Sumatra 2004 earthquake[J]. Geochem Geophys Geosyst, 2012, 12(7): 4080-4093. [10] Ozawa S, Nishimura T, Munekata H, et al. Preceding, coseismic, and postseismic slips of the 2011 Tohoku earthquake, Japan[J]. J Geophys Res, 2012, 117(B7): 346-348. [11] Pollitz F F, Burgmann R, Banerjee P. Post-seismic relaxation following the great 2004 Sumatra-Andaman earthquake on a compressible self-gravitating Earth[J]. Geophys J Int, 2006, 167(1): 397-420. [12] Wang K, Hu, Y, He J. Deformation cycles of subduction earthquakes in a viscoelastic Earth[J]. Nature, 2012, 484(7394): 327-332. [13] Diao F Q, Xiong X, Wang R J, et al. Overlapping postseismic deformation processes: Afterslip and viscoelastic relaxation following the 2011 MW9.0 Tohoku (Japan) earthquake[J]. Geophys J Int, 2013, 196(1): 218-229. [14] Yamagiwa S, Miyazaki S, Hirahara K, et al. Afterslip and viscoelastic relaxation following the 2011 Tohoku-oki earthquake (MW9.0) inferred from inland GPS and seafloor GPS/Acoustic data[J]. Geophys Res Lett, 2015, 42(1): 66-73. [15] Jónsson S, Segall P, Pedersen R, et al. Postearthquake, ground movements correlated to pore-pressure transients[J]. Nature, 2003, 424(6945): 179-183. [16] Wang R J, Lorenzo-Martín F, Roth F. PSGRN/PSCMP-a new code for calculating co- and post-seismic deformation, geoid and gravity changes based on the viscoelastic-gravitational dislocation theory[J]. Comput Geosc, 2006, 32(4): 527-541. [17] Wang R J, Diao F Q, Hoechner A. SDM-a geodetic inversion code incorporating with layered crust structure and curved fault geometry[J]. EGU General Assembly. 2013, 15: EGU2013-2411-1. [18] Shao Z G, Zhan W, Zhang L P, et al. Analysis of the far-field co-seismic and post-seismic responses caused by the 2011 MW9.0 Tohoku-Oki earthquake[J]. Pure Appl Geophys, 2015, 173(2): 1-14. [19] Suito H, Hirahara H. Simulation of postseismic deformations caused by the 1896 Riku-u earthquake, northeast Japan: Re-evaluation of the viscosity in the upper mantle[J]. Geophys Res Lett, 1999, 26(16): 2561-2564. [20] Fukahata Y, Matsu’ura M. Quasi-static internal deformation due to a dislocation source in a multilayered elastic/viscoelastic half-space and an equivalence theorem[J]. Geophys J Int, 2006, 166(1): 418-434. [21] Wang H S. Surface vertical displacements, potential perturbations and gravity changes of a viscoelastic earth model induced by internal point dislocations[J]. Geophys J Int, 1999, 137(2): 429-440. [22] Sun W K, Okubo S. Surface potential and gravity changes due to internal dislocations in a spherical earth—I. Theory for a point dislocation[J]. Geophys J Int, 1993, 114(3): 569-592. [23] Tanaka T, Okuno J, Okubo S. A new method for the computation of global viscoelastic post-seismic deformation in a realistic earth model (I)—vertical displacement and gravity variation[J]. Geophys J Int, 2006, 164(2): 273-289. [24] Tanaka T, Okuno J, Okubo S. A new method for the computation of global viscoelastic post-seismic deformation in a realistic earth model (II)—Horizontal displacement[J]. Geophys J Int, 2007, 170(3): 1031-1052. [25] 张国庆, 付广裕, 周新, 等. 利用震后黏弹性位错理论研究苏门答腊地震(MW9.3)的震后重力变化[J]. 地球物理学报, 2015, 58(5): 1654-1665. [26] Sun W K, Okubo S. Surface potential and gravity changes due to internal dislocations in a spherical earth -Ⅱ. Application to a finite fault[J]. Geophys J Int, 1998, 132(1): 79-88. [27] 付广裕, 孙文科. 球体位错理论计算程序的总体设计与具体实现[J]. 地震, 2012,32(2): 73-87. [28] Sun W K, Okubo S, Fu G Y, et al. General formulations of global co-seismic deformations caused by an arbitrary dislocation in a spherically symmetric earth model—Applicable to deformed earth surface and space-fixed point[J]. Geophys J Int, 2009, 177(3): 817-833. [29] Wei S J, Graves R, Helmberger D, et al. Sources of shaking and flooding during the Tohoku-Oki earthquake: a mixture of rupture styles[J]. Earth Planet Sci Lett, 2012, 333-334(6): 91-100. |