欢迎访问《地震》,

地震 ›› 2003, Vol. 23 ›› Issue (3): 10-18.

• • 上一篇    下一篇

基于PPAR 模型视二维地震时间序列预测的初步研究

王琼, 王海涛, 李莹甄   

  1. 新疆维吾尔自治区地震局, 新疆乌鲁木齐 830011
  • 收稿日期:2002-08-01 修回日期:2002-10-30 出版日期:2003-07-31 发布日期:2021-12-21
  • 作者简介:王琼(1973-), 女, 山东淄博人, 2000 年获硕士学位, 主要从事地震预报等研究。
  • 基金资助:
    “ 十五” 国家科技攻关项目(01-03-06)

Preliminary forecast study of two-dimensional seismic time sequence based on projection pursuit auto-regression model

WANG Qiong, WANG Hai-tao, LI Ying-zhen   

  1. Seismological Bureau of Xinjiang Urgur Autonomous Region, Urumqi 83011, China
  • Received:2002-08-01 Revised:2002-10-30 Online:2003-07-31 Published:2021-12-21

摘要: PP 投影寻踪是一种长于分析非正态、非线性的高维数据的新统计方法, 它通过投影降维, 客观地寻找反映高维数据结构特征的投影方向, 从而解决“ 维数祸根” 和高维数据间的非正态、非线性问题。将PP 理论和时间序列分析中的自回归(AR(K) ) 模型结合起来, 建立投影寻踪自回归预测模型(PPAR), 尝试实现地震震级和时间的视二维预测, 即在固定研究区里, 实现震级和时间二要素的预测, 进而建立视二维地震时间序列的投影寻踪自回归模型。研究中首先选取北天山地区作为实验区, 模型的回归拟合和外符检验效果较理想, 可实现视二维预测目标。考虑到实际预测意义, 即中强地震的预测, 又以天山地区为研究区。令其震级序列的震级阈值分别为5.0 和5.5, 分别以未删除余震和删除余震的序列建立模型。对比分析表明, 后者所建立的模型要优于前者的模型, 特别是对时间间隔序列的预测。两者外符检验的合格率均较高, 故认为对于震级和时间二要素的预测是有一定实效的。

关键词: 投影寻踪自回归, 地震时间序列, 视二维预测

Abstract: Projection pursuit (PP) is a new statistic method, which is good at analyzing non- normal.and non- -linear high-dimensional data. It searches for the project direction reflecting on the structurecharacteristics of high-di. mensional dada objecti vely by projecting and reducing di mensions, and solves" dimension curse" and non nomality and non-linearity among high- dimensions data. The article com -bines the PP technique with auto- regression model of time sequence analysis, and builds up the predic-tion model of projection pursuit au to- regression(PPAR). PPAR model tries to realize tw o dimensionalforecast of magnitude and time, i. e. forecasting the magnitude and time of an event in the fixed re-search region, and creates the pojection pursuit auto- regression model of tw o- dimensional seismic timesequence. In the study, we choose finst the northern Tïanshan area as the test site, and the results ofthe regression fitting and pretest test are good, so we could realize tow - -dimensional forecast. Consider-ing the value of forecast practice, i. e. moderately strong earthquake, we take the whole Tianshanmountain area as our research area. Let the magnitude th esholds of time sequence are 5.0 and 5.5 re-spectively, and build up the models with data of unde leted aftershocks and deleted- -aftershocks. Com-paring the two models, the latter is better than the former, particularly is to forecast time sequence.Their qualified ration of pretest tests are both high, so they are available for forecasting magnitude andtime of an event.

Key words: Project pursuit auto-regression, Seismic time sequence, Apparent two-dimensional forecast

中图分类号: