[1] 陈棋福, 王克林. 2008年汶川地震与中国的地震预报[J]. 世界地震译丛, 2010, 3(5): 34-54. CHEN Qi-fu, WANG Ke-lin. The 2008 Wenchuan earthquake and earthquake prediction in China[J]. World Earthquake Translation Collection, 2010, 3(5): 34-54 (in Chinese). [2] 徐程, 邹金慧. BP神经网络在地震预测中的应用研究[J]. 自动化仪表, 2012, 33(6): 12-14. XU Cheng, ZOU Jin-hui. Research and application of BP neural network in earthquake prediction[J]. Automation Instrumentation, 2012, 33(6): 12-14 (in Chinese). [3] 强祖基, 赁常恭, 李玲芝, 等. 卫星热红外图像亮温异常短临震兆[J]. 中国科学(D辑: 地球科学), 1998, 28(6): 446-455. QIANG Zu-ji, LIN Chang-gong, LI Ling-zhi, et al. Satellitic thermal infrared brightness temperature anomaly image: short-term and impending earthquake precursors[J]. Science in China (Series D: Earth Science), 1998, 28(6): 446-455 (in Chinese). [4] 闫丽莉, 屈春燕, 温少妍, 等. 卫星热红外亮温、 气温及地温观测的年变变化对比研究[J]. 地震学报, 2012, 34(2): 257-266. YAN Li-li, QU Chun-yan, WEN Shao-yan, et al. A comparison study on annual variation of thermal infrared brightness temperature and land temperature from meteorological stations[J]. Acta Seismologica Sinica, 2012, 34(2): 257-266 (in Chinese). [5] 李勇, 何洋波, 马丽, 等. 用分类回归树方法研究年亮温异常变[J]. 北京师范大学学报(自然科学版), 2003, 39(2): 143-146. LI Yong, HE Yang-bo, MA Li, et al. A study on abnormality brightness by classification and regression tree methods[J]. Journal of Beijing Normal University (Natural Science), 2003, 39(2): 143-146 (in Chinese). [6] 熊攀. 小波方法在地震遥感信息提取中的应用[D]. 北京: 中国地震局地震预测研究所, 2009. XIONG Pan. Wavelet-based methods for detecting earthquake information in remote sensing data[D]. Beijing: Institute of Earthquake Prediction, China Earthquake Administration, 2009 (in Chinese). [7] 陈顺云, 刘培洵, 刘力强, 等. 遥感与实测地表温度的对比分析及在地震研究中的意义[J]. 地球物理学报, 2011, 54(3): 747-755. CHEN Shun-yun, LIU Pei-xun, LIU Li-qiang, et al. Comparative analysis between land surface temperatures obtained by field measurement and satellite remote sensing and its implication in earthquake research[J]. Chinese Journal of Geophysics, 2011, 54(3): 747-755 (in Chinese). [8] 解涛, 康春丽, 卢军, 等. 2012年彝良MS5.7和MS5.6级地震热辐射亮温异常分析[J]. 地球物理学进展, 2013, 28(5): 2322-2327. XIE Tao, KANG Chun-li, LU Jun, et al. Study of brightness temperature anomalies of Yiliang (China) MS5.7 and MS5.6 earthquakes on 7 Sep., 2012[J]. Progress in Geophysics, 2013, 28(5): 2322-2327 (in Chinese). [9] Moustra M, Avraamides M, Christodoulou C. Artificial neural networks for earthquake prediction using time series magnitude data or Seismic Electric Signals[J]. Expert Systems with Applications, 2011, 38(12): 15032-15039. [10] Asencio-Cortés G, Martínez-álvarez F, Troncoso A, et al. Medium-large earthquake magnitude prediction in Tokyo with artificial neural networks[J]. Neural Computing and Applications, 2017, 28(3): 1043-1055. [11] Li R, Lu X, Li S, et al. DEP: A deep learning model for earthquake prediction[C]. In Proceedings of the 2020 IEEE International Joint Conference on Neural Networks, 2020,IJCNN’20: 1-8. [12] Huang J P, Wang X A, Zhao Y, et al. Large earthquake magnitude prediction in Taiwan based on deep learning neural network[J]. Neural Network World, 2018, 28(2): 149-160. [13] Nicolis O, Plaza F, Salas R. Prediction of intensity and location of seismic events using deep learning[J]. Spatial Statistics, 2021, 42: 100442. [14] 宋冬梅, 臧琳, 单新建, 等. 基于LST年趋势背景场的地震热异常提取算法[J]. 地震地质, 2016, 38(3): 680-695. SONG Dong-mei, ZANG Lin, SHAN Xin-jian, et al. A study on the algorithm for extracting earthquake thermal infrared anomalies based on the yearly trend of LST[J]. Seismology and Geology, 2016, 38(3): 680-695 (in Chinese). [15] 李冠东, 张春菊, 高飞, 等. 双卷积池化结构的3D-CNN高光谱遥感影像分类方法[J]. 中国图象图形学报, 2019, 24(4): 639-654. LI Guan-dong, ZHANG Chun-ju, GAO Fei, et al. Doubleconvpool-structured 3D-CNN for hyperspectral remote sensing image classification[J]. Journal of Image and Graphics, 2019, 24(4): 639-654 (in Chinese). [16] Chen Y S, Jiang H L, Li C Y. Deep feature extraction and classification of hyperspectral images based on convolutional neural networks[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(10): 6232-6251. [17] Tramutoli V, Aliano C, Corrado R, et al. On the possible origin of thermal infrared radiation (TIR) anomalies in earthquake-prone areas observed using robust satellite techniques (RST)[J]. Chemical Geology, 2013, 339: 157-168. [18] 李雪松, 李劲华, 吕智涵. 基于改进深度残差收缩网络的轴承故障诊断[J]. 青岛大学学报(自然科学版), 2022, 35(2): 38-43+50. LI Xue-song, LI Jin-hua, LÜ Zhi-han. Bearing fault diagnosis based on improved deep residual shrinkage network[J]. Journal of Qingdao University(Natural Science Edition), 2022, 35(2): 38-43+50 (in Chinese). [19] Peng Y H. Super-resolution reconstruction using multiconnection deep residual network combined an improved loss function for single-frame image[J]. Multimedia Tools and Applications, 2020, 79(3): 9351-9362. [20] Ni J, Shi P, Zhao Y, et al. Fixed-time output consensus tracking for high-order multi-agent systems with directed network topology and packet dropout[J]. IEEE/CAA Journal of Automatica Sinica, 2021, 8(4): 817-836. [21] 杜圣杰, 贾晓芬, 黄友锐, 等. 面向CNN模型图像分类任务的高效激活函数设计[J]. 红外与激光工程, 2022, 51(3): 493-501. DU Sheng-jie, JIA Xiao-fen, HUANG You-rui,et al. High efficient activation function design for CNN model image classification task[J]. Infrared and Laser Engineering, 2022, 51(3): 493-501 (in Chinese). [22] 刘成勇, 乔文杰, 陈蜀喆, 等. 基于LSTM与注意力机制的船舶航迹预测模型研究[J]. 中国航海, 2021, 44(4): 94-100. LIU Cheng-yong, QIAO Wen-jie, CHEN Shu-zhe, et al. On ship track prediction with LSTM and attention mechanism[J]. Navigation of China, 2021, 44(4): 94-100 (in Chinese). |