地震 ›› 2022, Vol. 42 ›› Issue (3): 165-179.doi: 10.12196/j.issn.1000-3274.2022.03.012
王玲灵, 刘红, 孙凤霞, 李一闪, 刘雷, 周晓成
收稿日期:
2021-05-24
修回日期:
2021-06-01
出版日期:
2022-07-31
发布日期:
2023-03-29
通讯作者:
刘红, 副研究员。 E-mail: liuh@ief.ac.cn
作者简介:
王玲灵(1996-), 女, 重庆市人, 在读硕士研究生, 主要从事岩石矿物性质理论计算研究。
基金资助:
WANG Ling-ling, LIU Hong, SUN Feng-xia, LI Yi-shan, LIU Lei, ZHOU Xiao-cheng
Received:
2021-05-24
Revised:
2021-06-01
Online:
2022-07-31
Published:
2023-03-29
摘要: 研究氦(He)在地表和地球深部矿物中的扩散特征与封闭温度, 对了解地震前兆信息和构造活动有重要意义, 对了解成矿过程及规律也有重要价值。 本文综述了He在石英等典型矿物中的扩散特征研究成果, 主要包括: ① He在锆石中的扩散; ② He在磷灰石中的扩散; ③ He在石英和柯石英中的扩散; ④ He在碳酸盐中的扩散; ⑤ He在角闪石等含水矿物中的扩散, 分析了He从矿物中扩散逃逸行为与地震活动过程中He浓度异常的关系, 对未来的研究方向提出了展望。
中图分类号:
王玲灵, 刘红, 孙凤霞, 李一闪, 刘雷, 周晓成. 氦在矿物中的扩散及其在地震研究中的应用前景[J]. 地震, 2022, 42(3): 165-179.
WANG Ling-ling, LIU Hong, SUN Feng-xia, LI Yi-shan, LIU Lei, ZHOU Xiao-cheng. Diffusion of Helium in Minerals and Its Application Prospects in Seismic Research[J]. EARTHQUAKE, 2022, 42(3): 165-179.
[1] Hilton D R, Fischer T P, Mcgonigle A J S, et al. Variable SO2 emission rates for Anatahan volcano, the Commonwealth of the Northern Mariana Islands: Implications for deriving arc-wide volatile fluxes from erupting volcanoes[J]. Geophysical Research Letters, 2007, 34(14): L14315. [2] Cherniak D J, Watson E B, Thomas J B. Diffusion of helium in zircon and apatite[J]. Chemical Geology, 2009, 268(1-2): 155-166. [3] Cherniak D J, Amidon W, Hobbs D, et al. Diffusion of helium in carbonates: Effects of mineral structure and composition[J]. Geochimica et Cosmochimica Acta, 2015, 165: 449-465. [4] Cherniak, D J, Watson E B. Diffusion of helium in olivine at 1 atm and 2.7 GPa[J]. Geochimica et Cosmochimica Acta, 2012, 84: 269-279. [5] Wang K, Brodholt J, Lu X C. Helium diffusion in olivine based on first principles calculations[J]. Geochimica et Cosmochimica Acta, 2015, 156: 145-153. [6] Chen Z, Li Y, Liu Z F, et al. Evidence of multiple sources of soil gas in the Tangshan fault zone, north China[J]. Geofluids, 2019(3): 1-12. [7] Chen J Y, Yang X S, Dang J X, et al. Internal structure and permeability of Wenchuan earthquake fault[J]. Chinese Journal of Geophysics, 2011, 54(7): 1805-1816. [8] 徐锡伟, 闻学泽, 叶建青, 等. 汶川MS8.0地震地表破裂带及其发震构造[J]. 地震地质, 2008, 30(3): 597-629. Xu X W, Wen X Z, Ye J Q, et al. The MS8.0 Wenchuan earthquake surface ruptures and its seismogenic structure[J]. Seismology and Geology, 2008, 30(3): 597-629 (in Chinese). [9] Allard P, Jean-Baptiste P, D'Alessandro W, et al. Mantle-derived helium and carbon in groundwaters and gases of Mount Etna, Italy[J]. Earth and Planetary Science Letters, 1997, 148(3-4): 501-516. [10] Wang C M, Li X H. Application of fracture gas measurement to the earthquake studies in China[J]. Earthquake Research in China, 1994(2): 38-53. [11] Sano Y, Wakita H, et al. Geographic distributions of the 3He/4He ratios in Japan : Implications for arc tectonics and incipient magmatism[J]. Journal of Geophysical Research: Solid Earth, 1985, 90(B10): 8729-8741. [12] Yang T F, Marty B, Hilton D R, et al. Geochemical applications of noble gases[J]. Chemical Geology, 2009, 266(1-2): 1-3. [13] Zhang Y X. Diffusion in minerals and melts: Theoretical background[J]. Reviews in Mineralogy & Geochemistry, 2010, 72(1): 5-59. [14] Harrison T M. Diffusion of 40Ar in hornblende[J]. Contributions to Mineralogy and Petrology, 1982, 78(3): 324-331. [15] Zeitler P K, Herczeg A L, McDougall I, et al. U-Th-He dating of apatite: A potential thermochronometer[J]. Geochimica et Cosmochimica Acta, 1987, 51(10): 2865-2868. [16] Wolf R A, Farley K A, Silver L T. Helium diffusion and low-temperature thermochronometry of apatite[J]. Geochimica et Cosmochimica Acta, 1996, 60(21): 4231-4240. [17] Reich M, Ewing R C, Ehlers T A, et al. Low-temperature anisotropic diffusion of helium in zircon: Implications for zircon (U-Th)/He thermochronometry[J]. Geochimica et Cosmochimica Acta, 2007, 71(12): 3119-3130. [18] Reiners P W. Zircon (U-Th)/He thermochronometry[J]. Reviews in Mineralogy and Geochemistry, 2005, 58(1): 151-179. [19] 陈文, 何学贤, 张彦, 等. 金属矿床年龄测定新技术(U-Th)/He同位素定年方法[C]. 第十届全国矿床会议, 2010. CHEN Wen, HE Xue-xian, ZHANG Yan, et al. A new technology for ageing of metallic deposits (U-Th)/He isotope dating method[C]. The 10th National Mineral Deposit Conference, 2010 (in Chinese). [20] Sun J B, Sun T F, Chen W, et al. Thermo-tectonic evolution history of Hongyuntan area, eastern Tianshan, Xinjiang: Constrained from Ar-Ar and (U-Th)/He dating[J]. Acta Petrologica Sinica, 2015, 31(12): 3732-3742 (in Chinese). [21] 喻顺, 陈文, 孙敬博, 等. 锆石He扩散行为: FCT锆石扩散实验的制约[J]. 中国科学: 地球科学, 2019, 49(4): 656-670. YU Shun, CHEN Wen, SUN Jing-bo, et al. Zircon He diffusion behavior: Constraints of FCT zircon diffusion experiments[J]. Chinese Science: Earth Science, 2019, 49(4): 656-670 (in Chinese). [22] Cherniak D J. Diffusion of helium in radiation-damaged zircon[J]. Chemical Geology, 2019, 529: 119308. [23] Farley K A, Kohn B P, Pillans B. The effects of secular disequilibrium on (U+Th)/He systematics and dating of Quaternary volcanic zircon and apatite[J]. Earth and Planetary Science Letters, 2002, 201: 117-125. [24] Liu H, Wang L L, Li S, et al. A first-principles study of helium diffusion in quartz and coesite under high pressure up to 12 GPa[J]. Geoscience Frontiers, 2021, 12(2): 1001-1009. [25] Cherniak D J, Watson E B. Diffusion of helium in natural monazite, and preliminary results on He diffusion in synthetic light rare earth phosphates[J]. American Mineralogist, 2013, 98(8-9): 1407-1420. [26] Jackson C R M, Parman S W, Kelley S P, et al. Constraints on light noble gas partitioning at the conditions of spinel-peridotite melting[J]. Earth and Planetary Science Letters, 2013, 384: 178-187. [27] 孔令昌, 王桂清, 王志敏, 等. 2005年7月25日黑龙江省林甸5.1级地震地下流体前兆异常分析[J]. 地震地磁观测与研究, 2006, 27(3): 16-19. KONG Ling-chang, WANG Gui-qing, WANG Zhi-min, et al. On July 25, 2005, Lindian, Heilongjiang Province, M5.1 earthquake: Analysis of precursor anomalies of subsurface fluids[J]. Seismic and Geomagnetic Observation and Research, 2006, 27(3): 16-19 (in Chinese). [28] 车用太, 王基华, 林元武, 等. 张北—尚义地震前的地下流体异常及其跟踪预报[J]. 地震地质, 1998(2): 99-104. CHE Yong-tai, WANG Ji-hua, LIN Yuan-wu, et al. The anomalies of subsurface fluids before the Zhangbei—Shangyi earthquake and trace prediction of the earthquake[J]. Seismology and Geology, 1998(2): 99-104 (in Chinese). [29] 鱼金子, 车用太, 张培仁, 等. 张家口MS4.2地震前的地下流体异常[J]. 地震, 1998, 18(4): 405-409. YU Jin-zi, CHE Yong-tai, ZHANG Pei-ren, et al. Anomalies of ground fluids before Zhangjiakou earthquake with MS4.2[J]. Earthquake, 1998, 18(4): 405-409 (in Chinese). [30] 李营, 杜建国, 王富宽, 等. 延怀盆地土壤气体地球化学特征[J]. 地震学报, 2009, 31(1): 82-91. LI Ying, DU Jian-guo, WANG Fu-kuan, et al. Geochemical characteristics of soil gases in Yanqing-Huailai Basin, North China[J]. Acta Seismological Sinica, 2009, 31(1): 82-91 (in Chinese). [31] Wakita H, Sano Y. 3He/4He ratios in CH4-rich natural gases suggest magmatic origin[J]. Nature, 1983, 305: 792-794. [32] 杜建国, 周晓成, 陈志, 等. 北天山泥火山对2012年6月30日新源—和静Ms6.6地震的响应[J]. 地震学报, 2013, 35(6): 876-887. DU Jian-guo, ZHOU Xiao-cheng, CHEN Zhi, et al. Responses of mud volcanoes in the North Tianshan to the 30 June 2012 Xinyuan—Hejing MS6.6 earthquake[J]. Acta Seismological Sinica, 2013, 35(6): 876-887 (in Chinese). [33] 陈志, 李营, 汪成国, 等. 新疆温泉县泥火山喷发水的化学特征研究[J]. 四川地震, 2015(2): 12-15. CHEN Zhi, LI Ying, WANG Cheng-guo, et al. Chemical characteristics of mud volcano eruption water in Wenquan county, Xinjiang[J]. Earthquake Research in Sichuan, 2015(2): 12-15 (in Chinese). [34] 赵慈平, 冉华, 王云. 腾冲火山区的现代幔源氦释放: 构造和岩浆活动意义[J]. 岩石学报, 2012, 28(4): 1189-1204. ZHAO Ci-ping, RAN Hua, WANG Yun. Modern mantle-derived helium release from the Tengchong volcanic region: Tectonic and magmatic implications[J]. Acta Petrologica Sinica, 2012, 28(4): 1189-1204 (in Chinese). [35] Zhou X C, Chen Z, Cui Y J, et al. Gas geochemistry of the hot spring in the Litang fault zone, Southeast Tibetan Plateau[J]. Applied Geochemistry, 2017, 79: 17-26. [36] Warnock A C, Zeitler P K, Wolf R A, et al. An evaluation of low-temperature apatite U-Th/He thermochronometry[J]. Geochimica et Cosmochimica Acta, 1997, 61(24): 5371-5377. [37] Farley K A. Helium diffusion from apatite: General behavior as illustrated by Durango fluorapatite[J]. Journal of Geophysical Research: Solid Earth, 2000, 105(B2): 2903-2914. [38] Shuster D L, Flowers R M, Farley K A, et al. The influence of natural radiation damage on helium diffusion kinetics in apatite[J]. Earth and Planetary Science Letters, 2006, 249(3-4): 148-161. [39] Shuster D L, Farley K A. The influence of artificial radiation damage and thermal annealing on helium diffusion kinetics in apatite[J]. Geochimica et Cosmochimica Acta, 2009, 73(1): 183-196. [40] Zeitler P K, Enkelmann E, Thomas J B, et al. Solubility and trapping of helium in apatite[J]. Geochimica et Cosmochimica Acta, 2017, 209: 1-8. [41] Recanti A, Barbarand J, Missenard Y, et al. Helium trapping in apatite damage: Insights from (U-Th-Sm)/He dating of different granitoid lithologies[J]. Chemical Geology, 2017, 470: 116-131. [42] Djimbi D M, Gautheron C, Roques J, et al. Corrigendum to “Impact of apatite chemical composition on (U-Th)/He thermochronometry: An atomistic point of view”[Geochim. Cosmochim. Acta 167 (2015) 162–176][J]. Geochimica et Cosmochimica Acta, 2016, 187: 375. [43] Gautheron C, Tassan-Got L. A Monte Carlo approach to diffusion applied to noble gas/helium thermochronology[J]. Chemical Geology, 2010, 273(3-4): 212-224. [44] Robinson K, Gibbs G V, Ribbe P H, et al. The structure of zircon: A comparison with garnet[J]. American Mineralogist, 1971(5-6): 782-790. [45] Hazen R M, Finger L W. Crystal structure and compressibility of zircon at high pressure[J]. American Mineralogist, 1979, 64(1-2): 196-201. [46] Guenthner W R. Zircon (U-Th)/He dates from radiation damaged crystals: A new damage-He diffusivity model for the zircon (U-Th)/He thermochronometer[D]. Tocson: The University of Arizona, 2013. [47] Reiners P W, Farley K A, Hickes H J, et al. He diffusion and (U-Th)/He thermochronometry of zircon: initial results from Fish Canyon Tuff and Gold Butte[J]. Tectonophysics, 2002, 349(1-4): 297-308. [48] Saadoune I, Purton J A, Leeuw N, et al. He incorporation and diffusion pathways in pure and defective zircon ZrSiO4: A density functional theory study[J]. Chemical Geology, 2009, 258(3-4): 182-196. [49] Bengtson A, Ewing R C, Becker U. He diffusion and closure temperatures in apatite and zircon: A density functional theory investigation[J]. Geochimica et Cosmochimica Acta, 2012, 86: 228-238. [50] Farley K A. He diffusion systematics in minerals: Evidence from synthetic monazite and zircon structure phosphates[J]. Geochimica et Cosmochimica Acta, 2007, 71(16): 4015-4024. [51] Johnson J E, Flowers R M, Baird G B, et al. “Inverted” zircon and apatite (U-Th)/He dates from the Front Range, Colorado: High-damage zircon as a low-temperature (<50°C) thermochronometer[J]. Earth and Planetary Science Letters, 2017, 466: 80-90. [52] Gautheron C, Djimbi D M, Roques J, et al. A multi-method, multi-scale theoretical study of He and Ne diffusion in zircon[J]. Geochimica et Cosmochimica Acta, 2019, 268: 348-367. [53] Anderson A J, van Soest M C, Hodges K V, et al. Helium diffusion in zircon: Effects of anisotropy and radiation damage revealed by laser depth profiling[J]. Geochimica et Cosmochimica Acta, 2020, 274: 45-62. [54] Gautheron C, Zeitler P K. Noble gases deliver cool dates from hot rocks[J]. Elements, 2020, 16(5): 303-309. [55] Li W X, Cheng Y Y, Feng L, et al. Alpha-decay induced shortening of fission tracks simulated by in situ ion irradiation[J]. Geochimica et Cosmochimica Acta, 2021, 299: 1-14. [56] 蔡长娥, 邱楠生, 李慧莉, 等. 自然演化碎屑锆石(U-Th)/He封闭温度的研究[J]. 中国科学: 地球科学, 2020, 50(1): 66-78. CAI Chang-e, QIU Nan-sheng, LI Hui-li, et al. Study of the closure temperature of (U-Th)/He in detrital zircon obtained from natural evolution samples[J]. Science China: Earth Sciences, 2020, 50(1): 66-78 (in Chinese). [57] Shuster D L, Farley K A. Diffusion kinetics of proton-induced 21Ne, 3He, and 4He in quartz[J]. Geochimica et Cosmochimica Acta, 2005, 69(9): 2349-2359. [58] Tremblay M M, Shuster D L, Balco G, et al. Diffusion kinetics of 3He and 21Ne in quartz and implications for cosmogenic noble gas paleothermometry[J]. Geochimica et Cosmochimica Acta, 2014, 142: 186-204. [59] Kalashnikov E, Tolstikhin I, Lehmann B, et al. Helium transport along lattice channels in crystalline quartz[J]. Journal of Physics and Chemistry of Solids, 2003, 64(11): 2293-2300. [60] Lin A M, Hu J M, Gong W B. Active normal faulting and the seismogenic fault of the 1739 M8.0 Pingluo earthquake in the intracontinental Yinchuan Graben, China[J]. Journal of Asian Earth Sciences, 2015, 114: 155-173. [61] Sobolev N V, Fursenko B A, Goryainov S V, et al. Fossilized high pressure from the Earth’s deep interior: the coesite-in-diamond barometer[J]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(22): 11875-11879. [62] Chen T, Wang X B, Qi X T, et al. Elasticity and phase transformation at high pressure in coesite from experiments and first-principles calculations[J]. American Mineralogist, 2016, 101(5-6): 1190-1196. [63] 李书晨, 刘红, 杨耀春, 等. 氦在方解石和文石中的扩散: 基于第一性原理的研究[J]. 高压物理学报, 2019, 33(5): 46-57. LI Shu-chen, LIU Hong, YANG Yao-chun, et al. Diffusion of helium in calcite and aragonite: A first-principles study[J]. Chinese Journal of High Pressure Physics, 2019, 33(5): 46-57 (in Chinese). [64] 李书晨. 氦在SiO2和CaCO3晶体中扩散的理论模拟研究[D]. 北京: 中国地震局地震预测研究所, 2019. LI Shu-chen. Theoretical simulation of helium diffusion in crystals of SiO2 and CaCO3[D]. Beijing: Institute of Earthquake Forecasting, China Earthquake Administration, 2019 (in Chinese). [65] Copeland P, Watson E B, Urizar S C, et al. Alpha thermochronology of carbonates[J]. Geochimica et Cosmochimica Acta, 2007, 71(18): 4488-4511. [66] Cros A, Gautheron C, Pagel M, et al. 4He behavior in calcite filling viewed by (U-Th)/He dating, 4He diffusion and crystallographic studies[J]. Geochimica et Cosmochimica Acta, 2014, 125: 414-432. [67] Jackson C R M, Parman S W, Kelley S P, et al. Light noble gas dissolution into ring structure-bearing materials and lattice influences on noble gas recycling[J]. Geochimica et Cosmochimica Acta, 2015, 159: 1-15. [68] Amidon W H, Hobbs D, Hynek S A. Retention of cosmogenic 3He in calcite[J]. Quaternary Geochronology, 2015, 27: 172-184. [69] Bender M L. Helium-uranium dating of corals[J]. Geochimica et Cosmochimica Acta, 1973, 37(5): 1229-1247. [70] Jackson C R M, Parman S W, Kelley S P, et al. Noble gas transport into the mantle facilitated by high solubility in amphibole[J]. Nature Geoscience, 2013, 6: 562-565. [71] Jackson C R M, Shuster D L, Parman S W, et al. Noble gas diffusivity hindered by low energy sites in amphibole[J]. Geochimica et Cosmochimica Acta, 2016, 172: 65-75. [72] Krantz J A, Parman S W, Kelley S P, et al. Noble gas recycling: Experimental constraints on Ar, Kr, and Xe solubility in serpentinite[C]. AGU Fall Meeting. AGU Fall Meeting Abstracts, 2016. [73] Wang K, Lu X C, Brodholt J P, et al. Diffusion of noble gases in subduction zone hydrous minerals[J]. Geochimica et Cosmochimica Acta, 2020, 291: 50-61. [74] Dodson M H. Closure temperature in cooling geochronological and petrological systems[J]. Contributions to Mineralogy and Petrology, 1973, 40: 259-274. [75] Reiners P W, Spell T L, Nicolescu S, et al. Zircon (U-Th)/He thermochronometry: He diffusion and comparisons with 40Ar/39Ar dating[J]. Geochimica et Cosmochimica Acta, 2004, 68(6): 1857-1887. [76] Stockli D F, Farley K A, Walker J D, et al. He diffusion and (U-Th)/He thermochronometry of monazite and rutile[C]. 15th Annual V M Goldschmidt Conference, 2005. [77] Boyce J W, Hodges K V, Olszewski W J J, et al. He diffusion in monazite: Implications for (U-Th)/He thermochronometry[J]. Geochemistry, Geophysics, Geosystems, 2005, 6: Q12004. |
[1] | 袁爱璟, 王伟君, 彭菲, 闫坤, 寇华东. 机器学习在地震预测中的应用进展[J]. 地震, 2021, 41(1): 51-66. |
[2] | 杨思宇, 易丽, 王双杰. 花岗岩水岩反应中水化学变化实验研究[J]. 地震, 2018, 38(3): 115-122. |
[3] | 张治广, 张元生, 王在华, 徐衍刚. 理塘MS5.1和杂多MS6.2地震热红外亮温异常分析[J]. 地震, 2018, 38(1): 178-186. |
[4] | 李鸿宇, 袁桂平. 强震前地磁总场F02测值的空间相关特征研究[J]. 地震, 2018, 38(1): 157-166. |
[5] | 王博, 钟骏, 王熠熙, 陈石. 南北地震带北段流体资料地震预测效能检验[J]. 地震, 2018, 38(1): 147-156. |
[6] | 王熠熙, 李赫, 王博, 杨朋涛, 王俊, 向阳, 王喜龙, 李悦. 2013年岷县—漳县MS6.6地震前水氡浓度的临界慢化现象研究[J]. 地震, 2018, 38(1): 128-138. |
[7] | 刘祎, 周晨, 赵正予, 赵庶凡, 张学民, 孔建. 基于LAIC电场渗透和SAMI2模拟的地震-电离层扰动现象研究[J]. 地震, 2018, 38(1): 74-83. |
[8] | 顾国华. 2016年日本九州岛7.3级地震前及同震地壳运动[J]. 地震, 2017, 37(3): 28-37. |
[9] | 赵庶凡, 张学民, 廖力, 钱庚. 2010年玉树7.3级地震前阿尔法导航信号场强异常分析[J]. 地震, 2016, 36(4): 153-162. |
[10] | 刘琦, 闫伟, 李智蓉, 窦玛丽, 马震. 南北地震带定点形变前兆异常指标初建[J]. 地震, 2016, 36(4): 76-88. |
[11] | 孙凤霞, 崔月菊, 郑红巍, 王玥, 李继成, 司学芸, 李新艳, 杜建国. 河套盆地周缘泉水化学组分对2015年4月15日阿左旗MS5.8地震的响应*[J]. 地震, 2016, 36(2): 105-118. |
[12] | 周克昌, 王方建, 邹钟毅, 纪寿文, 刘高川, 王军. 前兆台网历史数据迁移与整合[J]. 地震, 2013, 33(3): 90-97. |
[13] | 徐桃玲, 金红林, 郭鹏. 日本MW9.0地震前电离层异常初步分析[J]. 地震, 2012, 32(4): 131-139. |
[14] | 刘文义, 张文涛, 李丽, 黄稳柱, 李芳. 光纤传感技术未来地震监测的发展方向[J]. 地震, 2012, 32(4): 92-102. |
[15] | 顾国华. 地壳形变与地震前兆探索回顾和展望[J]. 地震, 2012, 32(2): 22-30. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||