[1] 邓起东, 张培震, 冉勇康, 等. 中国活动构造基本特征[J]. 中国科学(D辑), 2002, 32(12): 1020-1030. DENG Qi-dong, ZHANG Pei-zhen, RAN Yong-kang, et al. Basic characteristics of active tectonics of China[J]. Science in China (Series D), 2002, 32(12): 1020-1030 (in Chinese). [2] 张培震, 王敏, 甘卫军, 等. GNSS观测的活动断裂滑动速率及其对现今大陆动力作用的制约[J]. 地学前缘, 2003, 10(Z1): 81-92. ZHANG Pei-zhen, WANG Min, GAN Wei-jun, et al. Slip rates along major active faults from GPS measurements and constraints on contemporary continental tectonics[J]. Earth Science Frontiers, 2003, 10(Z1): 81-92 (in Chinese). [3] 李琦, 谭凯, 赵斌, 等.东昆仑断裂滑动速率变化及其对2017年九寨沟地震的应力加载[J]. 地球物理学报, 2019, 62(3): 912-922. LI Qi, TAN Kai, ZHAO Bin, et al. Slip rate change of East Kunlun fault and its stress effect on 2017 Jiuzhaigou earthquake[J]. Chinese Journal of Geophysics, 2019, 62(3): 912-922 (in Chinese). [4] Peltzer G, Tapponnier P, Armijo R. Magnitude of late Quaternary left-lateral displacements along the north edge of Tibet[J]. Science, 1989, 246(4935): 1285-1289. [5] Tapponnier P, Xu Z Q, Roger F, et a1. Oblique stepwise rise and growth of the Tibet plateau[J]. Science, 2001, 294(5547): 1671-1677. [6] Molnar P, Dayem K E. Major intracontinental strike-slip faults and contrasts in lithospheric strength[J]. Geosphere, 2010, 6(4): 444-467. [7] 周德敏, 甘卫军, 任金卫, 等. 基于GPS观测资料反演庄浪河断裂带、 马衔山北缘断裂带的滑动速率[J]. 地震地质, 2005, 27(4): 706-714. ZHOU De-min, GAN Wei-jun, REN Jin-wei, et al. Inversion of slip rates of the Zhuanglanghe faults and the northern marginal fault of Maxianshan based on GPS measurements[J]. Seismology and Geology, 2005, 27(4): 706-714 (in Chinese). [8] Okada Y. Internal deformation due to shear and tensile fault in a half-space[J]. Bulletin of the Seismological Society of America, 1992, 82(2): 1018-1040. [9] 姚志军. 祁连山断裂滑动速率的混沌遗传算法反演[D]. 西安: 长安大学, 2014. YAO Zhi-jun. The inversion of slip-rate on Qilianshan fault through Chaos-Genetic algorithm[D]. Xi'an: Chang'an University, 2014. [10] 郝明, 李煜航, 秦姗兰. 基于GPS数据的海原—六盘山断裂带滑动速率亏损时空分布[J]. 地震地质, 2017, 39(3): 471-484. HAO Ming, LI Yu-hang, QIN Shan-lan. Spatial and temporal distribution of slip rate deficit across Haiyuan Liupanshan fault zone constrained by GPS data[J]. Seismology and Geology, 2017, 39(3): 471-484 (in Chinese). [11] 刘杰. 基于GPS和水准数据的微粒群算法联合反演祁连山北缘断裂三维滑动速率[J]. 大地测量与地球动力学, 2019, 39(9): 906-909. LIU Jie. Three-dimensional slip velocity of northern edge of Qilian mountain fault inversion using the particle swarm optimization algorithm with GPS and leveling data [J]. Journal of Geodesy and Geodynamics, 2019, 39(9): 906-909 (in Chinese). [12] 董彦知, 高金宝, 张东涛. 浅析大地形变监测地震预报[J]. 城市建设理论研究, 2013(15). DONG Yan-zhi, GAO Jin-bao, ZHANG Dong-tao. Preliminary analysis of geodetic deformation monitoring and forecasting[J]. Theoretical Research in Urban Construction, 2013(15) (in Chinese). [13] 武艳强, 江在森, 杨国华. 最小二乘配置方法在提取GPS时间序列信息中的应用[J]. 国际地震动态, 2007(7): 99-103. WU Yan-qiang, JIANG Zai-sen, YANG Guo-hua. The application of least square collocation in obtaining information from GPS time series[J]. Recent Developments in World Seismology, 2007(7): 99-103 (in Chinese). [14] 党学会, 王同庆, 吕志鹏, 等. 汶川MS8.0地震前后川滇地区地壳水平形变动态变化初探[J]. 地震工程学报, 2016, 38(Z1): 30-35. DANG Xue-hui, WANG Tong-qing, LÜ Zhi-peng. Dynamic variation of horizontal crustal deformation in the Sichuan—Yunnan region before and after the Wenchuan MS8.0 earthquake[J]. China Earthquake Engineering Journal, 2016, 38(Z1): 30-35 (in Chinese). [15] Houseman G, England P.Crustal thickening versus lateral expulsion in the Indian-Asian continental collision[J]. Journal of Geophysical Research, 1993, 98(7): 12233-12249. [16] Zhang P Z, Shen Z K, Wang M, et al.Continuous deformation of the Tibetan plateau from global positioning system data[J]. Geology, 2004, 32(9): 809-812. [17] 樊计昌, 李松林, 张先康, 等.海原断裂在地壳深处的几何形态及其动力学意义[J]. 地震学报, 2004, 26(S1): 43-51. FAN Ji-chang, LI Song-lin, ZHANG Xian-kang, et al. Geometric form of Haiyuan fault zone in the crustal interior and dynamics implications[J]. Acta Seismologica Sinica, 2004, 26(S1): 43-51 (in Chinese). [18] 温燕林, 宋治平, 赵文舟, 等.东昆仑断裂带玛曲—玛沁段大震危险性分析和探讨[J]. 地震工程学报, 2015, 37(1): 175-180. WEN Yan-lin, SONG Zhi-ping, ZHAO Wen-zhou, et al. Analysis and discussion of large earthquake risk along the Maqu-Maqin segment of the east kunlun fault zone[J]. China Earthquake Engineering Journal, 2015, 37(1): 175-180 (in Chinese). [19] 曹喜林, 胡小飞, 潘保田, 等.三角剪切断层传播褶皱在祁连山北缘断裂中的应用: 以黑河口断层为例[J]. 第四纪研究, 2016, 36(4): 870-883. CAO Xi-lin, HU Xiao-fei, PAN Bao-tian, et al. Application of trishear fault-propagation folding to the north frontal thrust of the Qilianshan mountains: An example from the Heihekou fault[J]. Quaternary Sciences, 2016, 36(4): 870-883 (in Chinese). [20] 宁夏回族自治区地震局.宁夏回族自治区地震历史资料汇编[M]. 北京: 地震出版社, 1988. Earthquake Agency of Ningxia Hui Autonomous Region.Compilation of historical earthquake data of Ningxia Hui Autonomous Region[M]. Beijing: Seismological Press, 1988 (in Chinese). [21] 宁夏地质局研究队地质力学编图组.宁夏回族自治区构造体系图(1∶500000)[M]. 银川: 宁夏人民出版社, 1980. Geological Administration of Ninxia Hui Autonomous Region.Geological structure system map of Ningxia Hui Autonomous Region (1∶500000)[M]. Yinchuan: Ningxia People's Press, 1980 (in Chinese). [22] 蔡瑶瑶, 张军龙. 东昆仑断裂带地震复发间隔及地震危险性[J]. 地震, 2018, 38(3): 58-65. CAI Yao-yao, ZHANG Jun-long. Repeating intervals and potentials of earthquakes in the eastern Kunlun fault zone[J]. Earthquake, 2018, 38(3): 58-65 (in Chinese). [23] 刘兴旺, 袁道阳, 史志刚, 等. 六盘山断裂带构造活动特征及流域盆地地貌响应[J]. 地震工程学报, 2015, 37(1): 168-195. LIU Xing-wang, YUAN Dao-yang, SHI Zhi-gang. Tectonic activity characteristics of the Liupanshan fault zone and geomorphologic response of drainage basin[J]. China Earthquake Engineering Journal, 2015, 37(1): 168-195 (in Chinese). [24] 徐婉桢, 孟国杰, 苏小宁. 基于GPS观测的六盘山断裂震间闭锁特征研究[J]. 地震, 2016, 36(3): 14-24. XU Wan-zhen, MENG Guo-jie, SU Xiao-ning. Interseismic locking characteristics of the Liupanshan fault from GPS observation[J]. Earthquake, 2016, 36(3): 14-24 (in Chinese). [25] 杜方, 闻学泽, 冯建刚, 等. 六盘山断裂带的地震构造特征与强震危险背景[J]. 地球物理学报, 2018, 61(2): 545-559. DU Fang, WEN Xue-ze, FENG Jian-gang, et al. Seismo-tectonics and seismic potential of the Liupanshan fault zone (LPSFZ), China[J]. Chinese Journal of Geophysics, 2018, 61(2): 545-559 (in Chinese). [26] 张楠, 许文俊. 利用GPS数据研究南北地震带北段近期地壳水平形变特征[J]. 地震工程学报, 2018, 40(3): 562-573. ZHANG Nan, XU Wen-jun. Study of the recent crustal horizontal deformation in the northern segment of the North—South Seismic Belt based on GPS data[J]. China Earthquake Engineering Journal, 2018, 40(3): 562-573 (in Chinese). [27] 张楠, 许文俊, 王静, 等.南北地震带北段分区应变率场动态变化特征研究[J]. 地球物理学进展, 2020, 35(5): 1724-1735. ZHANG Nan, XU Wen-jun, WANG Jing, et al. Study on the zonal dynamic characteristics of strain rate field in the north section of the North-South Seismic Belt[J]. Progress in Geophysics, 2020, 35(5): 1724-1735 (in Chinese). [28] 徐锡伟, 于贵华, 陈桂华, 等. 青藏高原北部大型走滑断裂带近地表地质变形带特征分析[J]. 地震地质, 2007, 29(2): 201-217. XU Xi-wei, YU Gui-hua, CHEN Gui-hua, et al. Near-surface character of permanent geologic deformation across the mega-strike-slip faults in the northern Tibetan plateau[J]. Seismology and Geology, 2007, 29(2): 201-217 (in Chinese). [29] Zhang P Z, Molnar P, Xu X W. Late Quaternary and present-day rates of slip along the Altyn Tagh faut, northern margin of the Tibetan plateau[J]. Tectonics, 2007, 26(5): TC5010. [30] Chen Y W, Li S H, Li B. Slip rate of the Aksay segment of Altyn Tagh fault revealed by OSL dating of river terraces[J]. Quaternary Geochronology, 2012, 10: 291-299. [31] Chen Y W, Li S H, Sun J M, et al. OSL dating of offset streams across the Altyn Tagh Fault: Channel deflection, loess deposition and implication for the slip rate[J]. Tectonophysics, 2013, 594: 182-194. [32] 赵静, 牛安福, 李强, 等. 陇西块体周边断层闭锁程度与滑动亏损特征研究[J]. 地震研究, 2016, 39(3): 351-358. ZHAO Jing, NIU An-fu, LI Qiang, et al. Study on dynamic characteristics of fault locking and fault slip deficit in the faults around the Longxi block[J]. Journal of Seismological Research, 2016, 39(3): 351-358 (in Chinese). [33] Molnar P, Tapponnier P.Cenozoic tectonics of Asia: Effects of a continenta1 collision[J]. Nature, 1975, 189(4201): 419-426. [34] Avouac J P, Tapponnier P. Kinematic model of active deformation in central Asia[J]. Geophysical Research Letters, 1993, 20(10): 895-898. [35] 刘传金, 孙赫, 季灵运. 基于InSAR技术的阿尔金断裂带东段震间形变监测[J]. 国际地震动态, 2018(8): 152-153. LIU Chuan-jin, SUN He, JI Ling-yun. Interseismic deformation across the eastern segment of Altyn Tagh fault from InSAR measurements[J]. Recent Developments in World Seismology, 2018(8): 152-153 (in Chinese). [36] 田景雄, 安娜. 贺兰山东麓新构造运动特征[J]. 中国西部科技, 2015, 14(12): 30-32. TIAN Jing-xiong, AN Na. Features of neotectonics movement in the east of Helan Mountain[J]. Science and Technology of West China, 2015, 14(12): 30-32 (in Chinese). [37] 雷启云, 柴炽章, 杜鹏, 等.1739年平罗8级地震发震构造[J]. 地震地质, 2015, 37(2): 413-429. LEI Qi-yun, CHAI Zhi-zhang, DU Peng, et al. The seismogenic structure of the M8.0 Pingluo earthquake in 1739[J]. Seismology and Geology, 2015, 37(2): 413-429 (in Chinese). [38] 郭增建, 马宗晋.中国特大地震研究[M]. 北京: 地震出版社, 1988. GUO Zeng-jian, MA Zong-jin. Research of great earthquake in China[M]. Beijing: Seismological Press, 1988 (in Chinese). [39] 中屠炳明, 宋方敏, 曹忠权, 等. 秦岭北麓晚第四纪断层陡坎的初步研究[J]. 地震地质, 1991(1): 15-25. ZHONGTU bing-ming, SONG Fang-ming, CAO Zhong-quan, et al. Preliminary study on late quaternary fault scarps on the northern piedmont of Qiling mountain[J]. Seismology and Geology, 1991(1): 15-25 (in Chinese). [40] 侯建军, 韩慕康, 张保增, 等. 秦岭北麓断裂带晚第四纪活动的地貌表现[J]. 地理学报, 1995, 50(2): 138-146. HOU Jian-jun, HAN Mu-kang, ZHANG Bao-zeng, et al. Geomorphic expressions of the activity along north Qinling piedmont fault zone in the late quaternary period[J]. Acta Geographica Sinica, 1995, 50(2): 138-146 (in Chinese). [41] 张希, 张晓亮, 王双绪, 等.青藏块体东北缘近期地壳水平运动与应变积累[J]. 大地测量与地球动力学, 2008, 28(4): 12-16+43. ZHANG Xi, ZHANG Xiao-liang, WANG Shuang-xu, et al. Recent horizontal crustal movement and strain accumulation in northeastern margin of Qinghai-Tibet block[J]. Journal of Geodesy and Geodynamics, 2008, 28(4): 12-16+43 (in Chinese). [42] 张希, 张晓亮, 张四新, 等. 青藏块体东北缘近期GPS水平运动特征与汶川大震影响[J]. 地震研究, 2010, 33(4): 265-268. ZHANG Xi, ZHANG Xiao-liang, ZHANG Si-xin, et al. Features of current horizontal movement observed by GPS and influence of the great Wenchuan earthquake in the northeastern margin of Qinghai-Xizang block[J]. Journal of Seismological Research, 2010, 33(4): 265-268 (in Chinese). [43] 陈文彬.河西走廊及邻近地区最新构造变形基本特征及构造成因分析[D]. 北京: 中国地震局地质研究所, 2003. CHEN Wen-bin.Principal features of tectonic deformation and their generation mechanism in the Hexi Corridor and its adjacent regions since late quaternary[D]. Beijing: Institute of Geology, CEA, 2003 (in Chinese). [44] 李强, 江在森, 武艳强, 等. 海原—六盘山断裂带现今构造变形特征[J]. 大地测量与地球动力学, 2013, 33(2): 18-22. LI Qiang, JIANG Zai-sen, WU Yan-qiang, et al.Present-day tectonic deformation characteristics of Haiyuan-Liupanshan fault zone[J]. Journal of Geodesy and Geodynamics, 2013, 33(2): 18-22 (in Chinese). [45] 蒋锋云, 季灵运, 赵强. 海原—六盘山断裂带现今地震危险性的数值模拟分析[J]. 地质力学学报, 2021, 27(2): 230-240. JIANG Feng-yun, JI Ling-yun, ZHAO Qiang. Numerical simulation of the present seismic risk of the Haiyuan-Liupanshan fault zone[J]. Journal of Geomechanics, 2021, 27(2): 230-240 (in Chinese). [46] 乔鑫, 屈春燕, 单新建, 等. 基于时序InSAR的海原断裂带形变特征及运动学参数反演[J]. 地震地质, 2019, 41(6): 1481-1496. QIAO Xin, QU Chun-yan, SHAN Xin-jian, et al. Deformation characteristics and kinematic parameters inversion of Haiyuan fault zone based on time series InSAR[J]. Seismology and Geology, 2019, 41(6): 1481-1496 (in Chinese). [47] 崔笃信, 王庆良, 胡亚轩, 等.用GPS数据反演海原断裂带断层滑动速率和闭锁深度[J]. 地震学报, 2009, 31(5): 516-525. CUI Du-xin, WANG Qing-liang, HU Ya-xuan, et al.Inversion of GPS data for slip rates and locking depths of the Haiyuan fault[J]. Acta Seismologica Sinica, 2009, 31(5): 516-525 (in Chinese). [48] 杨海波, 杨晓平, 黄雄南, 等. 祁连山北缘断裂带中段晚第四纪活动速率初步研究[J]. 地震地质, 2017, 39(1): 20-42. YANG Hai-bo, YANG Xiao-ping, HUANG Xiong-nan, et al. A preliminary study about slip rate of middle segment of the northern Qilian thrust fault zone since late quaternary[J]. Seismology and Geology, 2017, 39(1): 20-42 (in Chinese). |