地震 ›› 2023, Vol. 43 ›› Issue (2): 166-188.doi: 10.12196/j.issn.1000-3274.2023.02.014
• • 上一篇
张敬业1, 孙珂1,2, 张国宏2
收稿日期:
2022-12-23
修回日期:
2023-03-21
发布日期:
2023-07-05
通讯作者:
孙珂, 研究员。 E-mail: sunke@cea-ies.ac.cn
作者简介:
张敬业(1997-), 男, 山东临沂人, 在读硕士研究生, 主要从事人工智能地震预测研究。
基金资助:
ZHANG Jing-ye1, SUN Ke1,2, ZHANG Guo-hong2
Received:
2022-12-23
Revised:
2023-03-21
Published:
2023-07-05
摘要: InSAR(Interferometric Synthetic Aperture Radar, InSAR)技术凭借其高精度、 大范围、 全天候监测的优势, 在地表高程、 形变等信息的获取、 反演等应用中得到了广泛的认可, 并逐渐发展为地壳形变观测领域里不可或缺的技术手段, 但利用InSAR技术进行地壳形变观测离不开海量数据的支持, 这势必会给信息的收集和解读带来新的挑战。 近些年, 机器学习快速发展并在遥感图像处理方面取得了令人鼓舞的成绩, 将深度学习方法与InSAR技术相结合的尝试应运而生, 深度学习突出的数据挖掘能力和对目标任务的分类、 预测能力将会为InSAR数据处理和地壳形变观测中的应用提供新技术手段。 本文介绍了深度学习在InSAR数据处理与地壳形变观测中的应用研究主要进展, 并对其应用前景进行了讨论和展望。
中图分类号:
张敬业, 孙珂, 张国宏. 深度学习在InSAR数据处理与地壳形变观测中的应用研究进展[J]. 地震, 2023, 43(2): 166-188.
ZHANG Jing-ye, SUN Ke, ZHANG Guo-hong. Research Progress in Data Processing and Application of Deep Learning in InSAR Crustal Deformation Observation[J]. EARTHQUAKE, 2023, 43(2): 166-188.
[1] 武楠, 冯大政, 刘宝泉. 一种基于枝切法和有限元法的干涉SAR合成相位展开方法[J]. 电子与信息学报, 2007(4): 846-850. WU Nan, FENG Da-zheng, LIU Bao-quan. A phase unwrapping approach based on the branch-cut method and finite element method for interferometric SAR[J]. Journal of Electronics & Information Technology, 2007(4):846-850 (in Chinese). [2] 杨帆, 王道顺, 张磊, 等. 一种改进的InSAR城市地面沉降监测精度评价方法[J]. 测绘通报, 2019(2): 54-57+85. YANG Fan, WANG Dao-shun, ZHANG Lei, et al. An improved accuracy evaluation method of urban ground subsidence monitoring in InSAR[J]. Bulletin of Surveying and Mapping, 2019(2): 54-57+85 (in Chinese). [3] Carnec C, Massonnet D, King C. Two examples of the use of SAR interferometry on displacement fields of small spatial extent[J]. Geophysical Research Letters, 1996, 23(24): 3579-3582. [4] Ng A H, Ge L, Zhang K, et al. Deformation mapping in three dimensions for underground mining using InSAR -Southern highland coalfield in New South Wales, Australia[J]. International Journal of Remote Sensing, 2011, 32(22): 7227-7256. [5] 李承涛, 李琦, 谭凯, 等. 2020年西藏尼玛MW6.3地震InSAR同震形变特征与破裂滑动分布[J]. 地球物理学报, 2021, 64(7): 2297-2310. LI Cheng-tao, LI Qi, TAN Kai, et al. Coseismic deformation characteristics of the 2020 Nima, Xizang MW6.3 earthquake from Sentinel-1A/B InSAR data and rupture slip distribution[J]. Chinese Journal of Geophysics, 2021, 64(7): 2297-2310 (in Chinese). [6] Feng G. An improved quadtree sampling method for InSAR seismic deformation inversion[J]. Remote Sensing, 2021, 13(9): 1678. [7] Abir I A, Khan S D, Ghulam A, et al. Active tectonics of western Potwar Plateau-Salt Range, northern Pakistan from InSAR observations and seismic imaging[J]. Remote Sensing of Environment, 2015,168. SHAN Xin-jian, QU Chun-yan, ZHANG Guo-hong, et al. InSAR crustal deformation observation and seismogenic fault characteristics[M]. Beijing: Science Press, 2021 (in Chinese). [8] Sandwell D T, Price E J. Phase gradient approach to stacking interferograms[J]. Journal of Geophysical Research: Solid Earth, 1998, 103(B12): 30183-30204. [9] Ferretti A, Prati C, Rocca F. Permanent scatterers in SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(1): 8-20. [10] Berardino P, Fornaro G, Lanari R, et al. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(11): 2375-2383. [11] Chen S Z, Wang H P. Sar target recognition based on deep learning[C]. Shanghai: IEEE International Conference on Data Science & Advanced Analytics, 2014: 541-547. [12] Ding J, Chen B, Liu H, et al. Convolutional neural network with data augmentation for SAR target recognition[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(3): 364-368. [13] Ševo I, Avramovic′ A. Convolutional neural network based automatic object detection on aerial images[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(5): 740-744. [14] Zhu H, Chen X, Dai W, et al. Orientation robust object detection in aerial images using deep convolutional neural network[C]. Quebec: IEEE International Conference on Image Processing (ICIP), 2015: 3735-3739. [15] Jiao L, Liu F. Wishart deep stacking network for fast POLSAR image classification[J]. IEEE Transactions on Image Processing, 2016, 25(7): 3273-3286. [16] Yang W, Yin X, Xia G. Learning high-level features for satellite image classification with limited labeled samples[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(8): 4472-4482. [17] Zhao Z, Jiao L, Zhao J, et al. Discriminant deep belief network for high-resolution SAR image classification[J]. Pattern Recognition, 2017, 61: 686-701. [18] Mukherjee S, Zimmer A, Sun X, et al. An unsupervised generative neural approach for InSAR phase filtering and coherence estimation[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 18(11): 1971-1975. [19] Valade S, Ley A, Massimetti F, et al. Towards global volcano monitoring using multisensor sentinel missions and artificial intelligence: The mounts monitoring system[J]. Remote Sensing, 2019, 11(13): 1528. [20] Sun X Y, Zimmer A, Mukherjee S, et al. Deep InSAR: A deep learning framework for sar interferometric phase restoration and coherence estimation[J]. Remote Sensing, 2020, 12(14): 2340. [21] Mukherjee S, Zimmer A, Kottayil N K, et al. CNN-based InSAR denoising and coherence metric[C]. New Delhi: 2018 IEEE sensors, 2018. [22] Wang H, Hu J, Fu H, et al. A novel quality-guided two-dimensional InSAR phase unwrapping method via GAUNet[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 7840-7856. [23] Zhou L, Yu H, Lan Y. Deep convolutional neural network-based robust phase gradient estimation for two-dimensional phase unwrapping using SAR interferograms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(7): 4653-4665. [24] Wang K, Li Y, Kemao Q. et al. One-step robust deep learning phase unwrapping[J]. Optics Express, 2019, 27(10): 15100-15115. [25] Zhang T, Jiang S, Zhao Z, et al. Rapid and robust two-dimensional phase unwrapping via deep learning[J]. Optics Express, 2019, 27(16): 23173-23185. [26] Ma Y L, Li Y H. Millimeter-wave InSAR target recognition with deep convolutional neural network[J]. Ieice Transactions on Information and Systems, 2019, E102D(3): 655-658. [27] Li S, Xu H, Gao S, et al. An interferometric phase noise reduction method based on modified denoising convolutional neural network[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 4947-4959. [28] Sica F, Calvanese F, Scarpa G, et al. A CNN-based coherence-driven approach for InSAR phase unwrapping[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 1-5. [29] Zhao Z, Wu Z, Zheng Y, et al. Recurrent neural networks for atmospheric noise removal from InSAR time series with missing values[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 180: 227-237. [30] Pu L M, Zhang X L, Zhou Z N, et al. A phase filtering method with scale recurrent networks for InSAR[J]. Remote Sensing, 2020, 12(20): 3453. [31] Liu Q, Zhang Y, Wei J, et al. HLSTM: Heterogeneous long short-term memory network for large-scale InSAR ground subsidence prediction[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 8679-8688. [32] Radman A, Akhoondzadeh M, Hosseiny B. Integrating InSAR and deep-learning for modeling and predicting subsidence over the adjacent area of Lake Urmia, Iran[J]. GIScience & Remote Sensing, 2021, 58(8): 1413-1433. [33] Wang S B, Zhuang J Q, Mu J Q, et al. Evaluation of landslide susceptibility of the Ya'an-Linzhi section of the Sichuan-Tibet Railway based on deep learning[J]. Environmental Earth Sciences, 2022, 81: 250. [34] Panahi M, Jaafari A, Shirzadi A, et al. Deep learning neural networks for spatially explicit prediction of flash flood probability[J]. Geoscience Frontiers, 2021, 12(3): 101076. [35] Yang W, He Y, Yao S, et al. An InSAR interferogram filtering method based on multi-level feature fusion CNN[J]. Sensors, 2022, 22: 5956. [36] Zeyada H H, Mostafa M S, Ezz M M, et al. Resolving phase unwrapping in interferometric synthetic aperture radar using deep recurrent residual U-Net[J]. Egyptian Journal of Remote Sensing and Space Sciences, 2022, 25(1): 1-10. [37] Zhao X, Wang C, Zhang H, et al. Inversion of seismic source parameters from satellite InSAR data based on deep learning[J]. Tectonophysics, 2021, 821: 229140. [38] Chen Y, He Y, Zhang L, et al. Prediction of InSAR deformation time-series using a long short-term memory neural network[J]. International Journal of Remote Sensing, 2021, 42(18): 6921-6944. [39] Ma P, Zhang F, Lin H. Prediction of InSAR time-series deformation using deep convolutional neural networks[J]. Remote Sensing Letters, 2020, 11(2): 137-145. [40] Ge S J, Antropov O, Su W M, et al. Deep recurrent neural networks for land-cover classification using sentinel-1 insar time series[C]. Yokohama: IEEE international geoscience and remote sensing symposium (IGARSS 2019), 2019: 473-476. [41] Chen K, Chen K, Wang Q, et al. Short-term load forecasting with deep residual networks[J]. IEEE Transactions on Smart Grid, 2019, 10(4): 3943-3952. [42] 曹州. 一种改进的基于RNN的遥感影像变化检测方法研究[D]. 北京: 中国科学院大学, 2020. CAO Zhou. Research on a modified remote sensing image change detection basedon RNN[D]. Beijing: University of Chinese Academy of Sciences, 2020 (in Chinese). [43] 康秦瑀. 基于DNN的遥感图像海面目标检测技术研究[D]. 西安: 西安工业大学, 2020. KANG Qin-yu. Research on remote sensing image of sea surface object detection based on DNN[D]. Xi'an: Xi'an Technological University, 2020 (in Chinese). [44] 刘青豪, 张永红, 邓敏, 等. 大范围地表沉降时序深度学习预测法[J]. 测绘学报, 2021, 50(3): 396-404. LIU Qing-hao, ZHANG Yong-hong, DENG Min, et al. Time series prediction method of large-scale surface subsidence based on deep learning[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(3): 396-404 (in Chinese). [45] 王俊, 郑彤, 雷鹏, 等. 深度学习在雷达中的研究综述[J]. 雷达学报, 2018, 7(4): 395-411. WANG Jun, ZHENG Tong, LEI Peng, et al. Study on deep learning in radar[J]. Journal of Radars, 2018, 7(4): 395-411 (in Chinese). [46] 周金国. InSAR数据处理方法与应用研究[D]. 重庆: 重庆大学, 2008. ZHOU Jin-guo. Study of InSAR data processing methods and application[D]. Chongqing: Chongqing university, 2008 (in Chinese). [47] 黄惠宁, 覃辉. InSAR技术基本原理及其数据处理流程[J]. 地理空间信息, 2012, 10(2): 93-95. HUANG Hui-ning, TAN Hui. Basic principles and data processing of InSAR technology[J]. Geospatial Information, 2012, 10(2): 93-95 (in Chinese). [48] Li L, Zhang H, Tang Y, et al. InSAR phase unwrapping by deep learning based on gradient information fusion[J]. IEEE Geoscience and Remote Sensing Letters, 2022(19): 1-5. [49] Lee J S, Papathanassiou K P, Ainsworth T L, et al. A new technique for noise filtering of SAR interferometric phase images[J]. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36(5): 1456-1465. [50] Goldstein R M, Zebker H A, Werner C L. Satellite radar interferometry: Two-dimensional phase unwrapping[J]. Radio Science, 1988, 23(4): 713-720. [51] Deledalle C, Denis L, Tupin F. NL-InSAR: Nonlocal interferogram estimation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(4): 1441-1452. [52] Sica F, Cozzolino D, Zhu X X, et al. InSAR-BM3D: A nonlocal filter for SAR interferometric phase restoration[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(6): 3456-3467. [53] Ferraiuolo G, Poggi G. A Bayesian filtering technique for SAR interferometric phase fields[J]. IEEE Transactions on Image Processing, 2004, 13(10): 1368-1378. [54] Fu S, Long X, Yang X, et al. Directionally adaptive filter for synthetic aperture radar interferometric phase images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(1): 552-559. [55] Chao C, Chen K, Lee J, et al. Refined filtering of interferometric phase from InSAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(12): 5315-5323. [56] Shi X, Zhang Y. Improving goldstein filter by image entropy for InSAR interferogram filtering: 2011 3rd international Asia-Pacific conference on synthetic aperture radar (APSAR)[C]. Seoul, Korea (South), 2011. [57] Dabov K, Foi A, Katkovnik V, et al. Image denoising by sparse 3-D transform-domain collaborative filtering[J]. IEEE Transactions on Image Processing, 2007, 16(8): 2080-2095. [58] Wang P Y, Zhang H, Patel V M. SAR Image despeckling using a convolutional neural network[J]. IEEE Signal Processing Letters, 2017, 24(12): 1763-1767. [59] Cozzolino D, Verdoliva L, Scarpa G, et al. Nonlocal CNN SAR image despeckling[J]. Remote Sensing, 2020, 12(6): 1006. [60] Zhong H, Tang J, Zhang S, et al. An improved quality-guided phase-unwrapping algorithm based on priority queue (Vol 8, pg 364, 2011)[J]. IEEE Geoscience and Remote Sensing Letters, 2011, 8(5): 364-368. [61] Chao C F, Chen K S, Lee J S, et al. Refined filtering of interferometric phase from Insar data[C]. Munich: IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 2012:1821-1824. [62] 张诗玉, 李陶, 夏耶. 基于InSAR技术的城市地面沉降灾害监测研究[J]. 武汉大学学报(信息科学版), 2008(8): 850-853. ZHANG Shi-yu, LI Tao, XIA Ye. Study on urban area subsidence monitoring based on Insar technique[J]. Geomatics and Information Science of Wuhan University, 2008(8): 850-853 (in Chinese). [63] Flynn T J. Consistent 2-D phase unwrapping guided by a quality map[C]. 1996 International Geoscience and Remote Sensing Symposium (IGARSS 96)-Remote Sensing for a Sustainable, 1996: 2057-2059. [64] Herráez M A, Burton D R, Lalor M J, et al. Fast two-dimensional phase-unwrapping algorithm based on sorting by reliability following a noncontinuous path[J]. Applied Optics, 2002, 41(35): 7437-7444. [65] Pritt M D. Phase unwrapping by means of multigrid techniques for interferometric SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 1996, 34(3): 728-738. [66] Costantini M. A novel phase unwrapping method based on network programming[J]. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36(3): 813-821. [67] Chen C W, Zebker H A. Phase unwrapping for large SAR interferograms: statistical segmentation and generalized network models[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(8): 1709-1719. [68] Bioucas-Dias J M, Valadao G. Phase unwrapping via graph cuts[J]. IEEE Transactions on Image Processing, 2007, 16(3): 698-709. [69] 曲小宁. 合成孔径雷达干涉测量及若干关键技术研究[D]. 西安: 西安电子科技大学, 2012. QU Xiao-ning. Research on key technique for interferometric synthetic aperture radar measurement[D]. Xi'an: Xidian University, 2012 (in Chinese). [70] 范洪冬. InSAR若干关键算法及其在地表沉降监测中的应用研究[D]. 江苏: 中国矿业大学, 2010. FAN Hong-dong. Study on several key algorithms of InSAR technique and its application in land subsidence monitoring[D]. Jiangsu: China University of Mining and Technology, 2010 (in Chinese). [71] Zhou L, Yu H, Pascazio V, et al. PU-GAN: A One-Step 2-D InSAR phase unwrapping based on conditional generative adversarial network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022: 60: 1-10. [72] Isola P, Zhu J Y, Zhou T H, et al. Image-to-image translation with conditional adversarial networks[C]. 30th IEEE conference on computer vision and pattern recognition (CVPR 2017). 2017: 5967-5976. [73] Spoorthi G E, Gorthi S, Gorthi R K S S. PhaseNet: A deep convolutional neural network for two-dimensional phase unwrapping[J]. IEEE Signal Processing Letters, 2019, 26(1): 54-58. [74] Spoorthi G E, Gorthi R K S S, Gorthi S. PhaseNet 2.0: Phase unwrapping of noisy data based on deep learning approach[J]. IEEE Transactions on Image Processing, 2020, 29: 4862-4872. [75] Wu Z P, Wang T, Wang Y J, et al. Deep-learning-based phase discontinuity prediction for 2-D phase unwrapping of SAR interferograms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-16. [76] Zhou L F, Yu H W, Lan Y, et al. Deep learning-based branch-cut method for InSAR two-dimensional phase unwrapping[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-15. [77] 张国宏, 屈春燕, 宋小刚, 等. 基于InSAR同震形变场反演汶川MW7.9地震断层滑动分布[J]. 地球物理学报, 2010, 53(2): 269-279. ZHANG Guo-hong, QU Chun-yan, SONG Xiao-gang, et al. Slip distribution and source parameters inverted from co-seismic deformation derived by InSAR technology of Wenchuan MW7.9 earthquake[J]. Chinese Journal of Geophysics, 2010, 53(2): 269-279 (in Chinese). [78] 单新建, 屈春燕, 龚文瑜, 等. 2017年8月8日四川九寨沟7.0级地震InSAR同震形变场及断层滑动分布反演[J]. 地球物理学报, 2017, 60(12): 4527-4536. SHAN Xin-jian, QU Chun-yan, GONG Wen-yu, et al. Coseismic deformation field of the Jiuzhaigou MS7.0 earthquake from Sentinel-1A InSAR data and fault slip inversion[J]. Chinese Journal of Geophysics, 2017, 60(12): 4527-4536 (in Chinese). [79] Rouet-Leduc B, Jolivet R, Dalaison M, et al. Autonomous extraction of millimeter-scale deformation in InSAR time series using deep learning[J]. Nature Communications, 2021, 12(1): 6480. [80] Atzori S, Antonioli A, Tolomei C, et al. InSAR full-resolution analysis of the 2017—2018 M>6 earthquakes in Mexico[J]. Remote Sensing of Environment, 2019, 234. [81] Fathian A, Atzori S, Nazari H, et al. Complex co- and postseismic faulting of the 2017—2018 seismic sequence in western Iran revealed by InSAR and seismic data[J]. Remote Sensing of Environment, 2021: 253. [82] Picchiani M, Del Frate F, Schiavon G, et al. Neural Networks for automatic seismic source analysis from DInSAR datai[C]. Prague: Conference on SAR Image Analysis, Modeling, and Techniques XI, 2011: 8179. [83] Stramondo S, Del Frate F, Picchiani M, et al. Seismic source quantitative parameters retrieval from InSAR data and neural networks[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(1): 96-104. [84] Zhang T, Zhang W C, Cao D, et al. A new deep learning neural network model for the identification of InSAR anomalous deformation areas[J]. Remote Sensing, 2022, 14: 2690. [85] Yuan R, Chen J. A hybrid deep learning method for landslide susceptibility analysis with the application of InSAR data[J]. Natural Hazards, 2022, 114: 1393-1426. [86] Sameen M I, Pradhan B, Lee S. Application of convolutional neural networks featuring Bayesian optimization for landslide susceptibility assessment[J]. Catena, 2020, 186: 104249. [87] Pham B T, Prakash I, Dou J, et al. A novel hybrid approach of landslide susceptibility modelling using rotation forest ensemble and different base classifiers[J]. Geocarto International, 2020, 35(12): 1267-1292. [88] Anantrasirichai N, Biggs J, Albino F, et al. A deep learning approach to detecting volcano deformation from satellite imagery using synthetic datasets[J]. Remote Sensing of Environment, 2019, 230: 111179. [89] Anantrasirichai N, Biggs J, Albino F, et al. The application of convolutional neural networks to detect slow, sustained deformation in InSAR time series[J]. Geophysical Research Letters, 2019, 46(21): 11850-11858. [90] Ichikawa K, Hirose A. Singular unit restoration in InSAR using complex-valued neural networks in the spectral domain[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(3): 1717-1723. [91] 孙志军, 薛磊, 许阳明. 基于深度学习的边际Fisher分析特征提取算法[J]. 电子与信息学报, 2013, 35(4): 805-811. SUN Zhi-jun, XUE Lei, XU Yang-ming. Marginal fisher feature extraction algorithm based on deep learning[J]. Journal of Electronics & Information Technology, 2013, 35(4): 805-811 (in Chinese). [92] 李腾飞, 秦永彬. 基于迭代深度学习的缺陷检测[J]. 计算机与数字工程, 2017, 45(6): 1133-1137. LI Teng-fei, QIN Yong-bin. Feature detection base on iterative deep learning[J]. Computer and Digital Engineering, 2017, 45(6): 1133-1137 (in Chinese). [93] 熊红凯, 高星, 李劭辉, 等. 可解释化、 结构化、 多模态化的深度神经网络[J]. 模式识别与人工智能, 2018, 31(1): 1-11. XIONG Hong-kai, GAO Xing, LI Shao-hui, et al. Interpretable structured multi-modal deep neural network[J]. Pattern Recognition and Artificial Intelligence, 2018, 31(1): 1-11 (in Chinese). [94] Zeiler M D, Krishnan D, Taylor G W, et al. Deconvolutional Networks[C]. San Francisco: Proc of the IEEE international conference on computer vision and pattern recognition (CVPR), 2010: 2528-2535. |
[1] | 张夏, 董彦芳, 洪顺英. 东昆仑断裂带玛沁—玛曲段三维形变研究[J]. 地震, 2023, 43(4): 169-184. |
[2] | 陈秋玉, 张晓东, 赵翠萍. 水力压裂诱发地震研究进展[J]. 地震, 2023, 43(4): 215-227. |
[3] | 章宇成, 华卫. 白鹤滩水库库区基于深度学习的震相拾取与地震定位[J]. 地震, 2023, 43(1): 137-151. |
[4] | 邹芳, 孟国杰, 苏小宁, 吴伟伟, 赵倩, 佘雅文, ThantMyo. 2021年云南漾濞MS6.4地震震前地壳形变特征研究[J]. 地震, 2022, 42(3): 21-36. |
[5] | 王鑫, 窦爱霞, 郭红梅, 袁小祥. 基于Deeplab V3+的2019年长宁M6.0地震建筑物震害信息提取研究[J]. 地震, 2022, 42(3): 124-140. |
[6] | 肖雁峰, 胡晓斌, 谭凯. 基于InSAR约束的2020年中国西藏定日MW5.7地震同震滑动模型[J]. 地震, 2022, 42(2): 140-148. |
[7] | 刘超亚, 董彦芳, 洪顺英, 孟国杰, 黄星, 刘泰. 利用InSAR获取2020年新疆于田MW6.3地震同震形变场与断层滑动分布反演[J]. 地震, 2021, 41(2): 62-79. |
[8] | 康帅, 刘传金, 朱良玉, 季灵运. 基于升降轨Sentinel-1 SAR数据研究2020年新疆于田MS6.4地震震源机制[J]. 地震, 2021, 41(2): 80-91. |
[9] | 袁爱璟, 王伟君, 彭菲, 闫坤, 寇华东. 机器学习在地震预测中的应用进展[J]. 地震, 2021, 41(1): 51-66. |
[10] | 王永哲, 陈石, 陈鲲. InSAR数据约束的2020年西藏定日MW5.7地震源模型及构造意义[J]. 地震, 2021, 41(1): 116-128. |
[11] | 余宏远, 李伟, 王文达. 利用考虑地形起伏的反演方法获取2017年伊拉克MW7.3地震的断层参数及滑动分布[J]. 地震, 2020, 40(4): 63-75. |
[12] | 徐小波, 马超, 洪顺英, 连达军, 张迎峰. 基于InSAR分析2015年尼泊尔MW7.8地震形变场特征及断层滑动分布反演[J]. 地震, 2020, 40(4): 76-89. |
[13] | 孙凯, 孟国杰, 洪顺英, 黄星, 董彦芳. 基于Sentinel-1A数据的四川长宁MS6.0地震同震形变场分析及断层滑动分布反演[J]. 地震, 2020, 40(3): 15-27. |
[14] | 罗毅, 田云锋, 张苏, 张景发. 利用InSAR技术研究青藏高原冻土形变特征[J]. 地震, 2020, 40(3): 179-188. |
[15] | 黄星, 洪顺英, 金红林, 刘泰, 董彦芳. 2015年新疆皮山MW6.4地震发震断层和滑动分布反演[J]. 地震, 2020, 40(1): 84-98. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||