地震 ›› 2023, Vol. 43 ›› Issue (3): 1-17.doi: 10.12196/j.issn.1000-3274.2023.03.001
• • 下一篇
魏斌1, 刘琦2, 王振宇2, 许月怡2, 邵志刚2
收稿日期:
2022-09-29
修回日期:
2023-02-20
出版日期:
2023-07-31
发布日期:
2023-08-28
通讯作者:
刘琦, 副研究员。 E-mail: liuqi@ief.ac.cn
作者简介:
魏斌(1969-), 男, 江苏常熟人, 高级工程师, 主要从事地震监测预报预警研究。
基金资助:
WEI Bin1, LIU Qi2, WANG Zhen-yu2, XU Yue-yi2, SHAO Zhi-gang2
Received:
2022-09-29
Revised:
2023-02-20
Online:
2023-07-31
Published:
2023-08-28
摘要: 强震震级预测在地震预测领域具有重要的科学意义, 同时对防震减灾工作也发挥着重要的现实作用。 本文基于国内外相关文献, 分析强震震级预测中凹凸体识别与级联破裂等关键问题。 通常, 地震的发生与凹凸体破坏有关, 而对凹凸体的识别, 主要可以从震源区介质性质、 中小地震活动、 断层运动状态、 应力状态、 摩擦属性等方面开展综合分析。 级联破裂的发生会提升地震震级, 增加地震灾害风险, 断层面曲率、 产状变化、 阶跃距离等断层几何性质, 以及断层面摩擦性质、 相邻断层段孕震层宽度变化、 断层面应力分布、 浅层低速区等断层及周围介质的物理性质控制其发生概率。 相关模型、 参数的研究有赖于密集观测和断层探察等基础性工作, 数值模拟和反演等技术应用以及多学科的综合, 希望本文可以为中国大陆重点断层段的强震震级预测工作提供参考。
中图分类号:
魏斌, 刘琦, 王振宇, 许月怡, 邵志刚. 强震震级预测中凹凸体识别与级联破裂相关研究综述[J]. 地震, 2023, 43(3): 1-17.
WEI Bin, LIU Qi, WANG Zhen-yu, XU Yue-yi, SHAO Zhi-gang. Review on the Research of Asperity Identification and Cascading Rupture in Forecasting of Earthquake Magnitude[J]. EARTHQUAKE, 2023, 43(3): 1-17.
[1] Kanamori H, Stewart G S. Seismological aspects of the Guatemala earthquake of February 4, 1976[J]. Journal of Geophysical Research: Solid Earth, 1978, 83(B7): 3427-3434. [2] Lay T, Kanamori H. Earthquake doublets in the Solomon islands[J]. Physics of the Earth and Planetary Interiors, 1980, 21(4): 283-304. [3] Scholz C H. The mechanics of earthquakes and faulting (2nd editing)[M]. Cambridge: Cambridge University Press, 2002. [4] Rudnicki J W, Kanamori H. Effects of fault interaction on moment, stress drop, and strain energy release[J]. Journal of Geophysical Research: Solid Earth, 1981, 86(B3): 1785-1793. [5] Aki K. Asperities, barriers, characteristic earthquakes and strong motion prediction[J]. Journal of Geophysical Research: Solid Earth, 1984, 89(B7): 5867-5872. [6] Ruff L J. Asperity distributions and large earthquake occurrence in subduction zone[J]. Tectonophysics, 1992, 211(1-4): 61-83. [7] Somerville P, Irikura K, Graves R, et al. Characterizing crustal earthquake slip models for the prediction of strong ground motion[J]. Seismological Research Letters, 1999, 70(1): 59-80. [8] Shen Z K, Sun J B, Zhang P Z, et al. Slip maxima at fault junctions and rupturing of barriers during the 2008 Wenchuan earthquake[J]. Nature Geoscience, 2009, 2(10): 718-724. [9] Xu X W, Wen X Z, Yu G H, et al. Coseismic reverse- and oblique-slip surface faulting generated by the 2008 MW7.9 Wenchuan earthquake, China[J]. Geology, 2009, 37(6): 515-518. [10] Tajima F, Mori J, Kennett B. A review of the 2011 Tohoku-Oki earthquake (MW9.0): Large-scale rupture across heterogeneous plate coupling[J]. Tectonophysics, 2013, 586: 15-34. [11] Sykes L R. Aftershock zones of great earthquakes, seismicity gaps, and earthquake prediction for Alaska and the Aleutians[J]. Journal of Geophysical Research, 1971, 76(32): 8021-8041. [12] 徐锡伟, 吴熙彦, 于贵华, 等. 中国大陆高震级地震危险区判定的地震地质学标志及其应用[J]. 地震地质, 2017, 39(2): 219-275. XU Xi-wei, WU Xi-yan, YU Gui-hua, et al. Seismo-geological signatures for identifying M≥7.0 earthquake risk areas and their premilimary application in mainland China[J]. Seismology and Geology, 2017, 39(2): 219-275 (in Chinese). [13] Lees J M. Tomographic P-wave velocity images of the Loma Prieta earthquake asperity[J]. Geophysical Research Letters, 1990, 17(9): 1433-1436. [14] Okada T, Hasegawa A, Suganomata J, et al. Imaging the source area of the 1995 southern Hyogo (Kobe) earthquake (M7.3) using double-difference tomography[J]. Earth and Planetary Science Letters, 2007, 253(1-2): 143-150. [15] Pei S P, Chen Y J. Link between seismic velocity structure and the 2010 MS7.1 Yushu earthquake, Qinghai, China: evidence from aftershock tomography[J]. Bulletin of the Seismological Society of America, 2012, 102(1): 445-450. [16] Pei S P, Zhang H J, Su J R, et al. Ductile gap between the Wenchuan and Lushan earthquakes revealed from the two-dimensional Pg seismic tomography[J]. Scientific Reports, 2014, 4: 6489. [17] Sun Q, Pei S P, Cui Z X, et al. Structure?controlled asperities of the 1920 Haiyuan M8.5 and 1927 Gulang M8 earthquakes, NE Tibet, China, revealed by high?resolution seismic tomography[J]. Scientific Reports, 2021, 11: 5090. [18] Wang Z, Huang W L, Zhao D P, et al. Mapping the Tohoku forearc: Implications for the mechanism of the 2011 East Japan earthquake (MW9.0)[J]. Tectonophysics, 2012, 524-525: 147-154. [19] Pei S P, Liu H B, Bai L, et al. High-resolution seismic tomography of the 2015 MW7.8 Gorkha earthquake, Nepal: Evidence for the crustal tearing of the Himalayan rift[J]. Geophysical Research Letters, 2016, 43(17): 9045-9052. [20] Lin C. The 1999 Taiwan earthquake: A proposed stress-focusing, heel-shaped model[J]. Bulletin of the Seismological Society of America, 2001, 91(5): 1053-1061. [21] Katsumata K. A long-term seismic quiescence before the 2004 Sumatra (MW9.1) earthquake[J]. Bulletin of the Seismological Society of America, 2015, 105(1): 167-176. [22] Katsumata K. A long-term seismic quiescence started 23 years before the 2011 off the Pacific coast of Tohoku earthquake (M=9.0)[J]. Earth Planets and Space, 2011, 63(7): 709-712. [23] Olson J A. Seismicity in the twenty years preceding the Loma Prieta California earthquake[J]. Geophysical Research Letters, 1990, 17(9): 1429-1432. [24] Nadeau R M, McEvilly T V. Fault slip rates at depth from recurrence intervals of repeating microearthquakes[J]. Science, 1999, 285(5428): 718-721. [25] Li L, Chen Q F, Niu F L, et al. Slip rate along the Lijiang-Ninglang fault zone estimated from repeating microearthquakes[J]. Chinese Science Bulletin, 2009, 54(3): 447-455. [26] Li L, Chen Q F, Niu F L, et al. Deep slip rates along the Longmen Shan fault zone estimated from repeating microearthquakes[J]. Journal of Geophysical Research: Solid Earth, 2011, 116(B9): B09310. [27] Schurr B, Asch G, Hainzl S, et al. Gradual unlocking of plate boundary controlled initiation of the 2014 Iquique earthquake[J]. Nature, 2014, 512: 299-302. [28] 李全林, 陈锦标, 于渌, 等. b值时空扫描监视破坏性地震孕育过程的一种手段[J]. 地球物理学报, 1978, 21(2): 101-125. LI Quan-lin, CHEN Jin-biao, YU Lu, et al. Time and space scanning of the b-value: A method for monitoring the development of catastrophic earthquakes[J]. Acta Geophysica Sinica, 1978, 21(2): 101-125 (in Chinese). [29] Tormann T, Enescu B, Woessner J, et al. Randomness of megathrust earthquakes implied by rapid stress recovery after the Japan earthquake[J]. Nature Geoscience, 2015, 8(2): 152-158. [30] 赵静, 江在森, 武艳强, 等. 汶川地震前龙门山断裂带闭锁程度和滑动亏损分布研究[J]. 地球物理学报, 2012, 55(9): 2963-2972. ZHAO Jing, JIANG Zai-sen, WU Yan-qiang, et al. Study on fault locking and fault slip deficit of the Longmenshan fault zone before the Wenchuan earthquake[J]. Chinese Journal of Geophysics, 2012, 55(9): 2963-2972 (in Chinese). [31] Madariag R, Métois M, Vigny C, et al. Central Chile finally breaks[J]. Science, 2010, 328(5975): 181-182. [32] Hashimoto C, Noda A, Sagiya T, et al. Interplate seismogenic zones along the Kuril-Japan trench inferred from GPS data inversion[J]. Nature Geoscience, 2009, 2(2): 141-144. [33] Loveless J P, Meade B J. Geodetic imaging of plate motions, slip rates, and partitioning of deformation in Japan[J]. Journal of Geophysical Research: Solid Earth, 2010, 115(B2): B02410. [34] Avouac J P, Meng L S, Wei S J, et al. Lower edge of locked Main Himalayan Thrust unzipped by the 2015 Gorkha earthquake[J]. Nature Geoscience, 2015, 8(9): 708-711. [35] Scholz C H. Earthquakes and friction laws[J]. Nature, 1998, 391: 37-42. [36] Marone C. Laboratory-derived friction laws and their application to seismic faulting[J]. Annual Review of Earth and Planetary Sciences, 1998, 26: 643-696. [37] Shao Z G, Wu Y Q, Ji L Y, et al. Assessment of strong earthquake risk in the Chinese mainland from 2021 to 2030[J]. Earthquake Research Advances, 2023, 3(1): 81-91. [38] Ruff L, Kanamori H. Seismicity and the subduction process[J]. Physics of the Earth and Planetary Interiors, 1980, 23(3): 240-252. [39] Ruff L, Kanamori H. Seismic coupling and uncoupling at subduction zones[J]. Tectonophysics, 1983, 99(2-4): 99-117. [40] Bletery Q, Thomas A M, Rempel A W, et al. Mega-earthquakes rupture flat megathrusts[J]. Science, 2016, 354(6315): 1027-1031. [41] Sibson R H. Stopping of earthquake ruptures at dilational fault jogs[J]. Nature, 1985, 316(6025): 248-251. [42] King G, Nábělek J. Role of fault bends in the initiation and termination of earthquake rupture[J]. Science, 1985, 228(4702): 984-987. [43] Wesnousky S G. Seismological and structural evolution of strike-slip faults[J]. Nature, 1988, 335: 340-343. [44] Biasi G P, Wesnousky S G. Bends and ends of surface ruptures[J]. Bulletin of the Seismological Society of America, 2017, 107(6): 2543-2560. [45] Lozos J C, Oglesby D D, Duan B, et al. The effects of double fault bends on rupture propagation: A geometrical parameter study[J]. Bulletin of the Seismological Society of America, 2011, 101(1): 385-398. [46] Shaw B E, Dieterich J H. Probabilities for jumping fault segment stepovers[J]. Geophysical Research Letters, 2007, 34(1): L01307. [47] Wesnousky S G. Predicting the endpoints of earthquake ruptures[J]. Nature, 2006, 444(7117): 358-360. [48] Elliott A J, Dolan J F, Oglesby D D. Evidence from coseismic slip gradients for dynamic control on rupture propagation and arrest through stepovers[J]. Journal of Geophysical Research: Solid Earth, 2009, 114(B2): B02312. [49] Biasi G P, Wesnousky S G. Steps and gaps in ground ruptures: Empirical bounds on rupture propagation[J]. Bulletin of the Seismological Society of America, 2016, 106(3): 1110-1124. [50] Oglesby D. Rupture termination and jump on parallel offset faults[J]. Bulletin of the Seismological Society of America, 2008, 98(1): 440-447. [51] Wesnousky S G. Displacement and geometrical characteristics of earthquake surface ruptures: Issues and implications for seismic-hazard analysis and the process of earthquake rupture[J]. Bulletin of the Seismological Society of America, 2008, 98(4): 1609-1632. [52] Harris R A, Archuleta R J, Day S M. Fault steps and the dynamic rupture process: 2-D numerical simulations of a spontaneously propagating shear fracture[J]. Geophysical Research Letters, 1991, 18(5): 893-896. [53] Magistrale H, Day S. 3D simulations of multi-segment thrust fault rupture[J]. Geophysical Research Letters, 1999, 26(14): 2093-2096. [54] Oglesby D D. The dynamics of strike-slip step-overs with linking dip-slip faults[J]. Bulletin of the Seismological Society of America, 2005, 95(5): 1604-1622. [55] Lozos J C, Oglesby D D, Brune J N, et al. Rupture propagation and ground motion of strike-slip stepovers with inter-mediate fault segments[J]. Bulletin of the Seismological Society of America, 2015, 105(1): 387-399. [56] Lay T, Kanamori H, Ruff L. The asperity model and the nature of large subduction zone earthquakes[J]. Earthquake Prediction Research, 1982, 1(1): 3-71. [57] Burgmann R, Schmidt D, Nadeau R M, et al. Earthquake potential along the Northern Hayward fault, California[J]. Science, 2000, 289(5482): 1178-1182. [58] Chlieh M, Avouac J P, Sieh K, et al. Heterogeneous coupling of the Sumatran megathrust constrained by geodetic and paleogeodetic measurements[J]. Journal of Geophysical Research: Solid Earth, 2008, 113(B5): B05305. [59] Perfettini H, Avouac J P, Tavera H, et al. Seismic and aseismic slip on the Central Peru megathrust[J]. Nature, 2010, 465(7294): 78-81. [60] Sibson R H. Interactions between temperature and pore-fluid pressure during earthquake faulting and a mechanism for partial or total stress relief[J]. Nature, 1973, 243(126): 66-68. [61] Tsutsumi A, Shimamoto T. High-velocity frictional properties of gabbro[J]. Geophysical Research Letters, 1997, 24(6): 699-702. [62] Noda H, Lapusta N. Stable creeping fault segments can become destructive as a result of dynamic weakening[J]. Nature, 2013, 493(7433): 518-521. [63] Madariaga R, Olsen K B. Criticality of rupture dynamics in 3-D[J]. Pure and Applied Geophysics, 2000, 157(11-12): 1981-2001. [64] Manighetti I, Campillo M, Bouley S, et al. Earthquake scaling, fault segmentation, and structural maturity[J]. Earth and Planetary Science Letters, 2007, 253(3-4): 429-438. [65] Weng H H, Yang H F. Seismogenic width controls aspect ratios of earthquake ruptures[J]. Geophysical Research Letters, 2017, 44(6): 2725-2732. [66] Lapusta N, Rice J R. Nucleation and early seismic propagation of small and large events in a crustal earthquake model[J]. Journal of Geophysical Research: Solid Earth, 2003, 108(B4): 2205. [67] Yang H F, Yao S L, He B, et al. Earthquake rupture dependence on hypocentral location along the Nicoya Peninsula subduction megathrust[J]. Earth and Planetary Science Letters, 2019, 520: 10-17. [68] Ripperger J, Ampuero J P, Mai P M, et al. Earthquake source characteristics from dynamic rupture with constrained stochastic fault stress[J]. Journal of Geophysical Research: Solid Earth, 2007, 112(B4): B04311. [69] Yang H F, Liu Y J, Lin J. Effects of subducted seamounts on megathrust earthquake nucleation and rupture propagation[J]. Geophysical Research Letters, 2012, 39(24): L24302. [70] Yang H F, Liu Y J, Lin J. Geometrical effects of a subducted seamount on stopping megathrust ruptures[J]. Geophysical Research Letters, 2013, 40(10): 2011-2016. [71] Weng H H, Huang J S, Yang H F. Barrier-induced supershear ruptures on a slip-weakening fault[J]. Geophysical Research Letters, 2015, 42(12): 4824-4832. [72] Cappa F, Perrin C, Manighetti I, et al. Off-fault long-term damage: A condition to account for generic, triangular earthquake slip profiles[J]. Geochemistry Geophysics Geosystems, 2014, 15(4): 1476-1493. [73] Pelties C, Huang Y, Ampuero J P. Pulse-like rupture induced by three-dimensional fault zone flower structures[J]. Pure and Applied Geophysics, 2015, 172(5): 1229-1241. [74] Weng H H, Yang H F, Zhang Z G, et al. Earthquake rupture extents and coseismic slips promoted by damaged fault zones[J]. Journal of Geophysical Research: Solid Earth, 2016, 121(6): 4446-4457. [75] 闻学泽, 杜方, 龙锋, 等. 小江和曲江—石屏两断裂系统的构造动力学与强震序列的关联性[J]. 中国科学: 地球科学, 2011, 41(5): 713-724. WEN Xue-ze, DU Fang, LONG Feng, et al. Tectonic dynamics and correlation of major earthquake sequences of the Xiaojiang and Qujiang-Shiping fault systems, Yunnan, China[J]. Science China Earth Science, 2011, 41(5): 713-724 (in Chinese). [76] Lu R Q, Xu X W, He D F, et al. Seismotectonics of the 2013 Lushan MW6.7 earthquake: Inversion tectonics in the eastern margin of the Tibetan Plateau[J]. Geophysical Research Letters, 2017, 44(16): 8236-8243. [77] Li Y Q, Lu R Q, He D F, et al. Transformation of coseismic faults in the northern Longmenshan tectonic belt, eastern Tibetan Plateau: Implications for potential earthquakes and seismic risks[J]. Journal of Asian Earth Sciences, 2019, 177: 66-75. [78] Carpenter B M, Marone C, Saffer D M. Frictional behavior of materials in the 3D SAFOD volume[J]. Geophysical Research Letters, 2009, 36(5): L05302. [79] Boulton C, Moore D E, Lockner D A, et al. Frictional properties of exhumed fault gouges in DFDP-1 cores, Alpine Fault, New Zealand[J]. Geophysical Research Letters, 2014, 41(2): 356-362. [80] Kato N, Lei X L, Wen X Z. A synthetic seismicity model for the Xianshuihe fault, southwestern China: Simulation using a rate- and state-dependent friction law[J]. Geophysical Journal International, 2007, 169(1): 286-300. [81] Jolivet R, Lasserre C, Doin M P, et al. Spatio-temporal evolution of aseismic slip along the Haiyuan fault, China: Implications for fault frictional properties[J]. Earth and Planetary Science Letters, 2013, 377-378: 23-33. [82] Fukuyama E, Mikumo T. Slip-weakening distance estimated at near-fault stations[J]. Geophysical Research Letters, 2007, 34(9): L09302. [83] Chen X, Yang H F, Jin M P. Inferring critical slip-weakening distance from near-fault accelerogram of the 2014 MW6.2 Ludian earthquake[J]. Seismological Research Letters, 2021, 92(6): 3416-3427. [84] Weng H H, Yang H F. Constraining frictional properties on fault by dynamic rupture simulations and near-field observations[J]. Journal of Geophysical Research: Solid Earth, 2018, 123(8): 6658-6670. [85] Yao S L, Yang H F. Rupture dynamics of the 2012 Nicoya MW7.6 earthquake: Evidence for low strength on the megathrust[J]. Geophysical Research Letters, 2020, 47(13): e2020GL087508. [86] Wells D L, Coppersmith K J. New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement[J]. Bulletin of the Seismological Society of America, 1994, 84(4): 974-1002. [87] Hanks T C, Bakun W H. A bilinear source-scaling model for M-log a observations of continental earthquakes[J]. Bulletin of the Seismological Society of America, 2002, 92(5): 1841-1846. [88] Shaw B E. Earthquake surface slip length data is fit by constant stress drop and is useful for seismic hazard analysis[J]. Bulletin of the Seismological Society of America, 2013, 103(2A): 876-893. [89] Cheng J, Rong Y F, Magistrale H, et al. Earthquake rupture scaling relations for mainland China[J]. Seismological Research Letters, 2020, 91(1): 248-261. [90] Shimazaki K, Nakata T. Time-predictable recurrence model for large earthquakes[J]. Geophysical Research Letters, 1980, 7(4): 279-282. [91] 陈运泰. 地震预测: 回顾与展望[J]. 中国科学(D辑), 2009, 39(12): 1633-1658. CHEN Yun-tai. Earthquake prediction: Retrospect and prospect[J]. Science in China (Series D), 2009, 39(12): 1633-1658 (in Chinese). [92] Meade B J, Hager B H. Block models of crustal motion in southern California constrained by GPS measurements[J]. Journal of Geophysical Research: Solid Earth, 2005, 110: B03403. [93] Wang F, Wang M, Wang Y Z, et al. Earthquake potential of the Sichuan-Yunnan region, western China[J]. Journal of Asian Earth Sciences, 2015, 107: 232-243. [94] Wang Y Z, Wang M, Shen Z K. Block-like versus distributed crustal deformation around the northeastern Tibetan plateau[J]. Journal of Asian Earth Sciences, 2017, 140: 31-47. [95] Beroza G C, Ide S. Slow earthquakes and nonvolcanic tremor[J]. Annual Review of Earth and Planetary Sciences, 2011, 39: 271-296. [96] Harris R A. Large earthquakes and creeping faults[J]. Reviews of Geophysics, 2017, 55: 169-198. [97] Gutenberg B, Richter C F. Frequency of earthquakes in California[J]. Bulletin of the Seismological Society of America, 1944, 34(4): 185-188. [98] Kagan Y Y. Statistics of characteristic earthquakes[J]. Bulletin of the Seismological Society of America, 1993, 83(1): 7-24. [99] Field E H, Arrowsmith R J, Biasi G P, et al. Uniform California Earthquake Rupture Forecast, Version 3 (UCERF3)-The Time-Independent Model[J]. Bulletin of the Seismological Society of America, 2014, 104(3): 1122-1180. [100] Hamling I J, Hreinsdóttir S, Clark K, et al. Complex multifault rupture during the 2016 MW7.8 Kaikōura earthquake, New Zealand[J]. Science, 2017, 356(6334): eaam7194. [101] Diederichs A, Nissen E K, Lajoie L J, et al. Unusual kinematics of the Papatea fault (2016 Kaikōura earthquake) suggest anelastic rupture[J]. Science Advances, 2019, 5(10): eaax5703. |
[1] | 汪小厉, 周冬瑞, 李玲利, 张炳, 柳建, 李军辉. “霍山地震窗”小震检测及其在地震预测中的应用[J]. 地震, 2024, 44(2): 135-146. |
[2] | 王岩鸿, 苏鹤军, 张慧, 李晨桦, 周慧玲. 标准年动态曲线形态分析方法在地震地下流体氡数据处理中的应用[J]. 地震, 2023, 43(1): 171-184. |
[3] | 张翔, 孙宪坤, 胡峻, 尹京苑, 熊玉洁. 结合数据扩增与残差收缩网络的地震短临预测[J]. 地震, 2022, 42(2): 74-88. |
[4] | 袁爱璟, 王伟君, 彭菲, 闫坤, 寇华东. 机器学习在地震预测中的应用进展[J]. 地震, 2021, 41(1): 51-66. |
[5] | 马士振, 刘宏志, 牟磊育. 在地脉动数据上应用分类算法的地震预测实验[J]. 地震, 2020, 40(1): 159-171. |
[6] | 张琰, 吴忠良, 李佳威. 地震预测预报研究议程的演变: 文献计量分析的启示[J]. 地震, 2019, 39(2): 159-173. |
[7] | 许忠淮. 应重视大地震预测物理基础的研究[J]. 地震, 2019, 39(2): 11-18. |
[8] | 李艳娥, 陈学忠. 2008年汶川MS8.0地震在2013年芦山MS7.0地震和2014年康定MS6.3地震破裂区引起的库仑破裂应力[J]. 地震, 2019, 39(1): 136-145. |
[9] | 李丽, 王霞, 宋美琴, 吴昊昱, 梁艳. 大同窗异常判定及预测效能初步分析[J]. 地震, 2018, 38(4): 142-150. |
[10] | 马禾青, 杨明芝. 地震活动多参数综合变量的异常分析方法以青海两次7级地震为例[J]. 地震, 2017, 37(4): 50-57. |
[11] | 尹祥础, 刘月, 张浪平, 李文军, 袁帅, 张小涛. “泛西南”地区加卸载响应比异常及大震活动预测与追踪[J]. 地震, 2017, 37(4): 37-49. |
[12] | 李玉江,邵志刚,季灵运,陈连旺. 加勒比板块多学科研究综述及其对地震预测的启示[J]. 地震, 2017, 37(2): 17-31. |
[13] | 张琳琳, 聂晓红, 刘建明, 魏芸芸, 刘萍. 基于AHP的新疆南天山西段中强地震预测指标体系及效能评估[J]. 地震, 2016, 36(4): 205-214. |
[14] | 王俊, 邵志刚, 孙小龙, 王熠熙, 向阳, 王喜龙. 川滇地区强震前流体异常特征与预测指标体系初探[J]. 地震, 2016, 36(4): 109-119. |
[15] | 陈长云, 郑智江, 李腊月, 畅柳. 南北地震带中南段典型强震震前跨断层形变特征分析[J]. 地震, 2016, 36(4): 47-60. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||