[1] 李祥, 万永革, 崔华伟, 等. 2016年1月21日青海门源MS6.1地震构造应力场[J]. 华北地震科学, 2016, 4(2): 36-41. LI Xiang, WAN Yong-ge, CUI Hua-wei, et al. Tectonic stress field of 2016, MS6.4 Menyuan, Qinghai earthquake[J]. North China Earthquake Sciences, 2016, 4(2): 36-41 (in Chinese). [2] 赵凌强, 孙翔宇, 詹艳, 等. 2022年1月8日青海门源MS6.9地震孕震环境和冷龙岭断裂分段延展特征[J]. 地球物理学报, 2022, 65(4): 1536-1546. ZHAO Ling-qiang, SUN Xiang-yu, ZHAN Yan, et al. The seismogenic model of the Menyuan MS6.9 earthquake on January 8, 2022, Qinghai Province and segmented extensional characteristics of the Lenglongling fault[J]. Chinese Journal of Geophysics, 2022, 65(4): 1536-1546 (in Chinese). [3] 何文贵, 刘百篪, 袁道阳, 等. 冷龙岭活动断裂的滑动速率研究[J]. 西北地震学报, 2000, 22(1): 90-97. HE Wen-gui, LIU Bai-chi, YUAN Dao-yang, et al. Research on slip rates of the Lenglongling active fault zone[J]. Northwestern Seismological Journal, 2000, 22(1): 90-97 (in Chinese). [4] 王永成, 刘百篪. 祁连山中东段断裂的地震危险性分析[J]. 西北地震学报, 2001, 23(4): 330-338. WANG Yong-cheng, LIU Bai-chi. Analysis on seismic risk for faults in the mid-eastern Qilianshan area[J]. Northwestern Seismological Journal, 2001, 23(4): 330-338 (in Chinese). [5] 郑文俊, 袁道阳, 何文贵. 祁连山东段天桥沟—黄羊川断裂古地震活动习性研究[J]. 地震地质, 2004, 26(4): 645-657. ZHENG Wen-jun, YUAN Dao-yang, HE Wen-gui. Characteristics of palaeo-earthquake activity along the active Tianqiaogou-Huangyangchuan fault on the eastern section of the Qilianshan mountains[J]. Seismology and Geology, 2004, 26(4): 645-657 (in Chinese). [6] 胡朝忠, 杨攀新, 李智敏, 等. 2016年1月21日青海门源6.4级地震的发震机制探讨[J]. 地球物理学报, 2016, 59(5): 1637-1646. HU Chao-zhong, YANG Pan-xin, LI Zhi-min, et al. Seismogenic mechanism of the 21 January 2016 Menyuan, Qinghai MS6.4 earthquake[J]. Chinese Journal of Geophysics, 2016, 59(5): 1637-1646 (in Chinese). [7] 刘百篪, 袁道阳, 何文贵, 等. 海原断裂带西端强震危险性分析[J]. 西北地震学报, 1992, 14(S1): 49-56. LIU Bai-chi, YUAN Dao-yang, HE Wen-gui, et al. The earthquake hazard analysis of western Haiyuan fault zone[J]. Northwestern Seismological Journal, 1992, 14(S1): 49-56 (in Chinese). [8] 赵凌强, 詹艳, 孙翔宇, 等. 利用大地电磁技术揭示2016年1月21日青海门源MS6.4地震隐伏地震构造和孕震环境[J]. 地球物理学报, 2019, 62(6): 2088-2100. ZHAO Ling-qiang, ZHAN Yan, SUN Xiang-yu, et al. The hidden seismogenic structure and dynamic environment of the 21 January Menyuan, Qinghai, MS6.4 earthquake derived from magnetotelluric imaging[J]. Chinese Journal of Geophysics, 2019, 62(6): 2088-2100 (in Chinese). [9] 李振洪, 韩炳权, 刘振江, 等. InSAR数据约束下的2016年和2022年青海门源地震震源参数及其滑动分布[J]. 武汉大学学报·信息科学版, 2022, 47(6): 887-897. LI Zhen-hong, HAN Bing-quan, LIU Zhen-jiang, et al. Source parameters and slip distributions of the 2016 and 2022 Menyuan, Qinghai earthquakes constrained by InSAR observations[J]. Geomatics and Information Science of Wuhan University, 2022, 47(6): 887-897 (in Chinese). [10] 万永革. 断裂带震源机制节面聚类确定断裂带产状方法及在2021年漾濞地震序列中的应用[J]. 地球物理学报, 2022, 65(2): 637-648. WAN Yong-ge. Method of active fault geometry determination by clustering nodal planes of focal mechanisms occurred on the fault belt and its application to the 2021 Yangbi earthquake sequence[J]. Chinese Journal of Geophysics, 2022, 65(2): 637-648 (in Chinese). [11] 万永革. 同一地震多个震源机制中心解的确定[J]. 地球物理学报, 2019, 62(12): 4718-4728. WAN Yong-ge. Determination of center of several focal mechanisms of the same earthquake[J]. Chinese Journal of Geophysics, 2019, 62(12): 4718-4728 (in Chinese). [12] 许英才, 郭祥云, 冯丽丽. 2022年1月8日青海门源MS6.9地震序列重定位和震源机制解研究[J]. 地震学报, 2022, 44(2): 195-210. XU Ying-cai, GUO Xiang-yun, FENG Li-li. Relocation and focal mechanism solutions of the MS6.9 Menyuan earthquake sequence on January 8, 2022 in Qinghai Province[J]. Acta Seismologica Sinica, 2022, 44(2): 195-210 (in Chinese). [13] 韩立波. 2022年青海门源MS6.9地震震源机制解[J]. 地震科学进展, 2022, 52(2): 49-54. HAN Li-bo. Focal mechanism of 2022 Menyuan MS6.9 earthquake in Qinghai Province[J]. Progress in Earthquake Sciences, 2022, 52(2): 49-54 (in Chinese). [14] Seismology小组. 2022年1月8日青海6.9级地震及5.1级余震的中心解及主震对周围的位移场和应变场及对余震的触发作用和对周围断层的库仑应力影响[EB/OL]. [2022-01-09]. https://mp.weixin.qq.com/s/gOR8-7kAErt-UP5dGzrUeA. Seismology group. The central focal mechanism solution of the Qinghai M6.9 and M5.1 earthquake occurred on January 8, 2022, the displacement and deformation fields and CFS generated by the main shock[EB/OL]. [2022-01-09]. https://mp.weixin.qq.com/s/gOR8-7kAErt-UP5dGzrUeA (in Chinese). [15] 中国地震局地质研究所. 2022年01月08日青海海北州门源县6.9级地震科技支撑简报[EB/OL]. [2022-01-14]. https://www.eq-igl.ac.cn/kydt/info/2022/36614.html. Institute of Geology, China Earthquake Administration. The science and technology support briefing of the 2022 January 8 Menyuan M6.9 earthquake occurred in Haibei prefecture, Qinghai Province[EB/OL]. [2022-01-14]. https://www.eq-igl.ac.cn/kydt/info/2022/36614.html (in Chinese). [16] 万永革. 震源机制水平应变花面应变的地震震源机制分类方法及序列震源机制总体特征分析[J]. 地球科学. 2022. http://kns.cnki.net/kcms/detail/42.1874.p.20220715.1532.014.html. WAN Yong-ge. Focal mechanism classification based on areal strain of the horizontal strain rosette of focal mechanism and characteristic analysis of overall focal mechanism of the earthquake sequence[J]. Earth Science, 2022. http://kns.cnki.net/kcms/detail/42.1874.p.20220715.1532.014.html (in Chinese). [17] 冯万鹏, 何骁慧, 张逸鹏, 等. 2022年青海门源MW6.6地震: 发震断层及孕震构造模式[J]. 科学通报, 2023, 68(2-3): 254-270. FENG Wan-Peng, HE Xiao-hui, ZHANG Yi-peng, et al. Seismic faults of the 2022 MW6.6 Menyuan, Qinghai earthquake and their implication for the regional seismogenic structures[J]. Chinese Science Bulletin, 2023, 68(2-3): 254-270 (in Chinese). [18] 梁宽, 何仲太, 姜文亮, 等. 2022年1月8日青海门源MS6.9地震的同震地表破裂特征[J]. 地震地质, 2022, 44(1): 256-278. LIANG Kuan, HE Zhong-tai, JIANG Wen-liang, et al. Surface rupture characteristics of the Menyuan MS6.9 earthquake on January 8, 2022, Qinghai Province[J]. Seismology and Geology, 2022, 44(1): 256-278 (in Chinese). [19] 盖海龙, 李智敏, 姚生海, 等. 2022年青海门源MS6.9地震地表破裂特征的初步调查研究[J]. 地震地质, 2022, 44(1): 238-255. GAI Hai-long, LI Zhi-min, YAO Sheng-hai, et al. Preliminary investigation and research on surface rupture characteristics of the 2022 Qinghai Menyuan MS6.9 earthquake[J]. Seismology and Geology, 2022, 44(1): 238-255 (in Chinese). [20] 潘家伟, 李海兵, Chevalier M L, 等. 2022年青海门源MS6.9地震地表破裂带及发震构造研究[J]. 地质学报, 2022, 96(1): 215-231. PAN Jia-wei, LI Hai-bing, Chevalier M L, et al. Coseismic surface rupture and seismogenic structure of the 2022 MS6.9 Menyuan earthquake, Qinghai province, China[J]. Acta Geologica Sinica, 2022, 96(1): 215-231 (in Chinese). [21] 万永革. 联合采用定性和定量断层资料的应力张量反演方法及在乌鲁木齐地区的应用[J]. 地球物理学报, 2015, 58(9): 3144-3156. WAN Yong-ge. A grid search method for determination of tectonic stress tensor using qualitative and quantitative data of active faults and its application to the Urumqi area[J]. Chinese Journal of Geophysics, 2015, 58(9): 3144-3156 (in Chinese). [22] 万永革, 沈正康, 刁桂苓, 等. 利用小震分布和区域应力场确定大震断层面参数方法及其在唐山地震序列中的应用[J]. 地球物理学报, 2008, 51(3): 793-804. WAN Yong-ge, SHEN Zheng-kang, DIAO Gui-ling, et al. An algorithm of fault parameter determination using distribution of small earthquakes and parameters of regional stress field and its application to Tangshan earthquake sequence[J]. Chinese Journal of Geophysics, 2008, 51(3): 793-804 (in Chinese). [23] 高彬, 周仕勇, 蒋长胜. 基于地震活动性资料估计鄂尔多斯块体周缘构造断层面倾角[J]. 地球物理学报, 2016, 59(7): 2444-2452. GAO Bin, ZHOU Shi-yong, JIANG Chang-sheng. Estimate of dip angles of faults around Ordos Block based on earthquakes[J]. Chinese Journal of Geophysics, 2016, 59(7): 2444-2452 (in Chinese). [24] 陈运泰, 林邦慧, 王新华, 等. 用大地测量资料反演的1976年唐山地震的位错模式[J]. 地球物理学报, 1979, 22(3): 201-217. CHEN Yun-tai, LIN Bang-hui, WANG Xin-hua, et al. A dislocation model of the Tangshan earthquake of 1976 from the inversion of geodetic data[J]. Chinese Journal of Geophysics, 1979, 22(3): 201-217 (in Chinese). [25] Wan Y G, Shen Z K, BÜrgmann R, et al. Fault geometry and slip distribution of the 2008 MW7.9 Wenchuan, China earthquake, inferred from GPS and InSAR measurements[J]. Geophysical Journal International, 2017, 208(2): 748-766. [26] 李智敏, 盖海龙, 李鑫, 等. 2022年青海门源MS6.9级地震发震构造和地表破裂初步调查[J]. 地质学报, 2022, 96(1): 330-335. LI Zhi-min, GAI Hai-long, LI Xin, et al. Seismogenic fault and coseismic surface deformation of the Menyuan MS6.9 earthquake in Qinghai, China[J]. Acta Geologica Sinica, 2022, 96(1): 330-335 (in Chinese). [27] Wan Y G, Sheng S Z, Huang J C, et al. The grid search algorithm of tectonic stress tensor based on focal mechanism data and its application in the boundary zone of China, Vietnam and Laos[J]. Journal of Earth Science, 2016, 27(5): 777-785. [28] 戴盈磊, 万永革, 梁永朵, 等. 基于震源机制解资料的辽宁地区现今构造应力场[J]. 地震, 2020, 40(3): 112-130. DAI Ying-lei, WAN Yong-ge, LIANG Yong-duo, et al. Present tectonic stress field in Liaoning area based on earthquake focal mechanisms[J]. Earthquake, 2020, 40(3): 112-130 (in Chinese). [29] 万永革, 吴忠良, 周公威, 等. 根据震源的两个节面的走向角和倾角求滑动角[J]. 地震地磁观测与研究, 2000, 21(5): 26-30. WAN Yong-ge, WU Zhong-liang, ZHOU Gong-wei, et al. How to get rake angle of the earthquake fault from known strike and dip of the two nodal planes[J]. Seismological and Geomagnetic Observation and Research, 2000, 21(5): 26-30 (in Chinese). [30] 王福昌, 万永革, 胡顺田. 粒子群算法在主震断层面参数估计中的应用[J]. 地震研究, 2008, 31(2): 149-154+198. WANG Fu-chang, WAN Yong-ge, HU Shun-tian. Application of particle swarm optimization to the estimation of mainshock fault plane parameters[J]. Journal of Seismological Research, 2008, 31(2): 149-154+198 (in Chinese). [31] 袁道阳, 张培震, 刘百篪, 等. 青藏高原东北缘晚第四纪活动构造的几何图像与构造转换[J]. 地质学报, 2004, 78(2): 270-278. YUAN Dao-yang, ZHANG Pei-zhen, LIU Bai-chi, et al. Geometrical imagery and tectonic transf ormation of late quaternary active tectonics in northeastern margin of Qinghai-Xizang plateau[J]. Acta Geologica Sinica, 2004, 78(2): 270-278 (in Chinese). [32] 万永革. 震源机制与应力体系关系模拟研究[J]. 地球物理学报, 2020, 63(6): 2281-2296. WAN Yong-ge. Simulation on relationship between stress regimes and focal mechanisms of earthquakes[J]. Chinese Journal of Geophysics, 2020, 63(6): 2281-2296 (in Chinese). [33] Aki K, Richards P G. Quantitative Seismology (Second edition)[M]. Melville: University Science Books, 2002. [34] Wessel P, Smith W H F. New, improved version of generic mapping tools released[J]. EOS Transactions, 1998, 79(47): 579. |