地震 ›› 2024, Vol. 44 ›› Issue (1): 118-140.doi: 10.12196/j.issn.1000-3274.2024.01.009
李建军1, 李文巧2, 贡秋卓玛3, 司金罗布3, 次仁多吉3, 李佳怡2, 张军龙2,3
收稿日期:
2023-05-30
修回日期:
2023-08-25
出版日期:
2024-01-31
发布日期:
2024-03-21
通讯作者:
张军龙, 研究员。E-mail:zhjulo_2002@163.com
作者简介:
李建军(1969-), 男, 山西泽州人, 副教授, 主要从事构造地质研究。
基金资助:
LI Jian-jun1, LI Wen-qiao2, GONGQIU Zhuo-ma3, SIJIN Luo-bu3, CIREN Duo-ji3, LI Jia-yi2, ZHANG Jun-long2,3
Received:
2023-05-30
Revised:
2023-08-25
Online:
2024-01-31
Published:
2024-03-21
摘要: 东昆仑断裂带是青藏高原内部的主要巨型左旋走滑断裂。 了解该断裂带的活动速率对于理解青藏高原的隆升演化和大陆构造变形过程至关重要。 近年来, 多学科的研究成果揭示了东昆仑断裂带活动速率时空变化特征的阶段性认识。 本文综述了东昆仑断裂带的几何分段、 深部结构和在数十年至数十万年时间尺度下的活动速率研究进展, 并探讨了未来的研究方向。 东昆仑断裂带呈现典型的走滑断裂几何结构, 自西向东形态逐渐变得复杂, 呈现出“马尾状”的构造形态。 通过遥感、 地质调查、 古地震和大地测量等方法, 研究者测量了东昆仑断裂带的水平和垂直活动速率。 研究结果显示, 水平活动速率自西向东总体减小。 以阿尼玛卿山(99°E~100°E)为界, 西部地区的水平活动速率基本稳定在10~12 mm/a, 变化不大; 东部地区的水平活动速率范围为1~12 mm/a, 不大于西部, 但该速率值存在较大争议。 垂直运动速率则呈现出相反的趋势, 西部约为水平活动速率的10%, 而东部逐步增加。 这表明西部的水平变形仍有部分在东部转换为垂向隆升。 在地貌位错量和大地测量数据相似的情况下, 活动速率的差异可能与位错量相应的起始年龄差异、 震后黏弹性松弛效应、 次级断裂和巴颜喀拉块体内部断裂、 岷山隆起等因素有关。 目前, 东昆仑断裂带的水平运动已有深入研究, 未来可以尝试补充其垂直运动的研究, 利用水平和垂直速率之比的变化来探讨水平走滑和垂向隆升变形的转变过程。 不同学科对于东昆仑断裂带的活动速率有不同的认识, 这是由于该断裂带具有复杂的几何结构, 并且不同学科的研究方法在时空尺度上也存在差异。 因此, 在综合分析多学科数据时, 需要考虑这些差异对结果解释的影响, 并尽可能采用相同或相近时间尺度下的数据进行对比。
中图分类号:
李建军, 李文巧, 贡秋卓玛, 司金罗布, 次仁多吉, 李佳怡, 张军龙. 东昆仑断裂带活动速率研究概观[J]. 地震, 2024, 44(1): 118-140.
LI Jian-jun, LI Wen-qiao, GONGQIU Zhuo-ma, SIJIN Luo-bu, CIREN Duo-ji, LI Jia-yi, ZHANG Jun-long. An Overview of Activity Rate Along the East Kunlun Fault Zone[J]. EARTHQUAKE, 2024, 44(1): 118-140.
[1] 张国伟, 郭安林, 姚安平. 中国大陆构造中的西秦岭—松潘大陆构造结[J]. 地学前缘, 2004, 11(3): 23-32. ZHANG Guo-wei, GUO An-lin, YAO An-ping. Western Qinling-Songpan continental tectonic node in China's continental tectonics[J]. Earth Science Frontiers, 2004, 11(3): 23-32 (in Chinese). [2] 许志琴, 杨经绥, 姜枚, 等. 青藏高原北部东昆仑—羌塘地区的岩石圈结构及岩石圈剪切断层[J]. 中国科学(D辑), 2001, 31(S1): 1-7. XU Zhi-qin, YANG Jing-sui, JIANG Mei, et al. Deep structure and lithospheric shear faults in the East Kunlun-Qiangtang region, northern Tibetan Plateau[J]. Science in China (Series D), 2001, 31(S1): 1-7 (in Chinese). [3] 张波, 田勤俭, 朱俊文, 等. 西秦岭南部地形异常隆起与构造解释兼论东昆仑断裂东段的走滑转换[J]. 第四纪研究, 2022, 42(3): 704-716. ZHANG Bo, TIAN Qin-jian, ZHU Jun-wen, et al. The topographical uplift of the southern part of the west Qinling mountains and its tectonic interpretation: A discussion on the strike-slip transition at the eastern end of the East Kunlun fault[J]. Quaternary Sciences, 2022, 42(3): 704-716 (in Chinese). [4] 李昭, 付碧宏. 东昆仑断裂带玛沁—玛曲段晚第四纪构造活动特征的地貌响应定量研究[J]. 地震地质, 2022, 44(6): 1421-1447. LI Zhao, FU Bi-hong. Quantitative analyses of geomorphologic features in response to Late Quaternary tectonic activities along the Maqin-Maqu segment, East Kunlun fault zone[J]. Seismology and Geology, 2022, 44(6): 1421-1447 (in Chinese). [5] Kidd W S F, Molnar P. Quaternary and active faulting observed on the 1985 Academia Sinica-Royal Society Geotraverse of Tibet[J]. Philosophical Transactions of the Royal Society of London Series A, Mathematical and Physical Sciences, 1988, 327(1594): 337-363. [6] 青海省地震局, 中国地震局地壳应力研究所. 东昆仑活动断裂带[M]. 北京: 地震出版社, 1999. Seismological Bureau of Qinghai Province, Institute of Crustal Dynamics, China Seismological Bureau. Eastern Kunlun active fault zone[M]. Beijing: Seismological Press, 1999 (in Chinese). [7] 张先康, 嘉世旭, 赵金仁, 等. 西秦岭—东昆仑及邻近地区地壳结构深地震宽角反射/折射剖面结果[J]. 地球物理学报, 2008, 51(2): 439-450. ZHANG Xian-kang, JIA Shi-xu, ZHAO Jin-ren, et al. Crustal structures beneath West Qinling-East Kunlun orogen and its adjacent area: Results of wide-angle seismic reflection and refraction experiment[J]. Chinese Journal of Geophysics, 2008, 51(2): 439-450 (in Chinese). [8] Ye Z, Li J, Gao R, et al. Crustal and uppermost mantle structure across the Tibet-Qinling transition zone in NE Tibet: Implications for material extrusion beneath the Tibetan Plateau[J]. Geophysical Research Letters, 2017, 44(20): 10316-10323. [9] 嘉世旭, 林吉焱, 郭文斌, 等. 巴颜喀拉块体地壳结构多样性探测[J]. 地球物理学报, 2017, 60(6): 2226-2238. JIA Shi-xu, LIN Ji-yan, GUO Wen-bin, et al. Investigation on diversity of crustal structures beneath the Bayan Har block[J]. Chinese Journal of Geophysics, 2017, 60(6): 2226-2238 (in Chinese). [10] 杨莉, 袁万明, 朱传宝, 等. 东昆仑中生代隆升剥露历史[J]. 岩石学报, 2021, 37(12): 3781-3796. YANG Li, YUAN Wan-ming, ZHU Chuan-bao, et al. Mesozoic uplift exhumation history of East Kunlun[J]. Acta Petrologica Sinica, 2021, 37(12): 3781-3796 (in Chinese). [11] Zhang J L. On fault evidence for a large earthquake in the late fifteenth century, Eastern Kunlun fault, China[J]. Journal of Seismology, 2017, 21(6): 1397-1405. [12] 任金卫, 汪一鹏, 吴章明, 等. 青藏高原北部库玛断裂东、 西大滩段全新世地震形变带及其位移特征和水平滑动速率[J]. 地震地质, 1993, 15(3): 285-288. REN Jin-wei, WANG Yi-peng, WU Zhang-ming, et al. Holocene earthquake deformation zones and their displacement and slip rate along the Xidatan-Dongdatan of Kusaihu-Maqu fault in northern Qinghai-Xizang Plateau[J]. Seismology and Geology, 1993, 15(3): 285-288 (in Chinese). [13] 刘光勋. 东昆仑活动断裂带及其强震活动[J]. 中国地震, 1996, 12(2): 119-126. LIU Guang-xun. Eastern Kunlun active fault zone and its seismic activity[J]. Earthquake Research in China, 1996, 12(2): 119-126 (in Chinese). [14] 赵国光. 青藏高原北部的第四纪断层运动[J]. 中国地震, 1996, 12(2): 109-118. ZHAO Guo-guang. Quaternary faulting in North Qinghai-Tibet Plateau[J]. Earthquake Research in China, 1996, 12(2): 109-118 (in Chinese). [15] Van Der Woerd J, Tapponnier P, Ryerson F J, et al. Uniform postglacial slip-rate along the central 600 km of the Kunlun Fault (Tibet), from 26Al, 10Be, and 14C dating of riser offsets, and climatic origin of the regional morphology[J]. Geophysical Journal Internationa, 2002, 148(3): 356-388. [16] Zhang P Z, Shen Z K, Wang M, et al. Continuous deformation of the Tibetan Plateau from global positioning system data[J]. Geology, 2004, 32(9): 809-812. [17] Kirby E, Harkins N, Wang E, et al. Slip rate gradients along the Eastern Kunlun fault[J]. Tectonics, 2007, 26(2): TC2010. [18] Harkins N, Kirby E, Shi X H, et al. Millennial slip rates along the Eastern Kunlun fault: Implications for the dynamics of intracontinental deformation in Asia[J]. Lithosphere, 2010, 2(4): 247-266. [19] 李陈侠, 徐锡伟, 闻学泽, 等. 东昆仑断裂带中东部地震破裂分段性与走滑运动分解作用[J]. 中国科学: 地球科学, 2011, 41(9): 1295-1310. LI Chen-xia, XU Xi-wei, WEN Xue-ze, et al. Rupture segmentation and slip partitioning of the mid-eastern part of the Kunlun Fault, north Tibetan Plateau[J]. Science China Earth Sciences, 2011, 41(9): 1295-1310 (in Chinese). [20] 张军龙, 任金卫, 陈长云, 等. 东昆仑断裂带东部晚更新世以来活动特征及其大地构造意义[J]. 中国科学: 地球科学, 2014, 44(4): 654-667. ZHANG Jun-long, REN Jin-wei, CHEN Chang-yun, et al. The Late Pleistocene activity of the eastern part of East Kunlun fault zone and its tectonic significance[J]. Science China Earth Sciences, 2014, 44(4): 654-667 (in Chinese). [21] Avouac J-P, Tapponnier P. Kinematic model of active deformation in central Asia[J]. Geophysical Research Letters, 1993, 20(10): 895-898. [22] Tapponnier P, Xu Z Q, Roger F, et al. Oblique stepwise rise and growth of the Tibet Plateau[J]. Science, 2001, 294(5547): 1671-1677. [23] England P, Houseman G. Extension during continental convergence, with application to the Tibetan Plateau[J]. Journal of Geophysical Research: Solid Earth, 1989, 94(B12): 17561-17579. [24] Royden L H, Burchfiel B C, Van Der Hilst R D. The Geological Evolution of the Tibetan Plateau[J]. Science, 2008, 321(5892): 1054-1058. [25] 张国民, 田勤俭, 王辉. 可可西里—东昆仑活动构造带强震活动研究[J]. 地学前缘, 2003, 10(1): 39-46. ZHANG Guo-min, TIAN Qin-jian, WANG Hui. Strong earthquake activities in Kekexili-East Kunlun Mountains active fault zone, Northwest China[J]. Earth Science Frontiers, 2003, 10(1): 39-46 (in Chinese). [26] 肖振敏, 刘光勋, 王焕贞, 等. 青海花石峡地震形变带的初步研究[J]. 中国地震, 1988, 4(1): 68-75. XIAO Zhen-min, LIU Guan-xun, WANG Huan-zhen, et al. A preliminary study on earthquake deformation zone at Huashixia in Qinghai Province[J]. Earthquake Research in China, 1988, 4(1): 68-75 (in Chinese). [27] 李建军, 张军龙, 蔡瑶瑶. 东昆仑断裂带历史地震、 古地震及地震空区讨论[J]. 地震, 2017, 37(1): 103-111. LI Jian-jun, ZHANG Jun-long, CAI Yao-yao. Investigation of historical earthquakes, paleo-earthquakes and seismic gap in the Eastern Kunlun fault zone[J]. Earthquake, 2017, 37(1): 103-111 (in Chinese). [28]Wen X, Yi G, Xu X. Background and precursory seismicities along and surrounding the Kunlun fault before the MS8.1, 2001, Kokoxili earthquake, China[J]. Journal of Asian Earth Sciences, 2007, 30(1): 63-72. [29] Zhu L, Ji L, Jiang F. Variations in Locking Along the East Kunlun fault, Tibetan Plateau, China, using GPS and leveling data[J]. Pure and Applied Geophysics, 2020, 177(1): 215-231. [30] 潘家伟, 白明坤, 李超, 等. 2021年5月22日青海玛多MS7.4地震地表破裂带及发震构造[J]. 地质学报, 2021, 95(6): 1655-1670. PAN Jia-wei, BAI Ming-kun, LI Chao, et al. Coseismic surface rupture and seismogenic structure of the 2021-05-22 Maduo (Qinghai) MS7.4 earthquake[J]. Acta Geologica Sinica, 2021, 95(6): 1655-1670 (in Chinese). [31] 张军龙, 任金卫, 付俊东, 等. 东昆仑断裂带东部塔藏断裂地震地表破裂特征及其构造意义[J]. 地震, 2012, 32(1): 1-16. ZHANG Jun-long, REN Jin-wei, FU Jun-dong, et al. Earthquake rupture features and tectonic significance of the Tazang fault in the eastern part of the East Kunlun fault zones[J]. Earthquakes, 2012, 32(1): 1-16 (in Chinese). [32] 李建军, 蔡瑶瑶, 张军龙. 东昆仑断裂带东段塔藏断裂几何结构及滑动递减模型讨论[J]. 地震, 2019, 39(1): 20-28. LI Jian-jun, CAI Yao-yao, ZHANG Jun-long. Geometric structure and slip gradient model of the Tazang fault in the East Kunlun fault zone[J]. Earthquake, 2019, 39(1): 20-28 (in Chinese). [33] 李陈侠, 袁道阳, 杨虎, 等. 东昆仑断裂带东段分支断裂阿万仓断裂晚第四纪构造活动特征[J]. 地震地质, 2016, 38(1): 44-64. LI Chen-xia, YUAN Dao-yang, YANG Hu, et al. The tectonic activity characteristics of Awancang fault in the Late Quaternary, the sub-strand of the Eastern Kunlun fault[J]. Seismology and Geology, 2016, 38(1): 44-64 (in Chinese). [34] 周荣军, 李勇, Densmore A L. 青藏高原东缘活动构造[J]. 矿物岩石, 2006, 26(2): 40-51. ZHOU Rong-jun, LI Yong, Densmore A L, et al. Active tectonics at east edge of the Qinghai-Tibet Plateau[J]. Journal of Mineralogy and Petrology, 2006, 26(2): 40-51 (in Chinese). [35] 张军龙, 任金卫, 陈长云, 等. 岷江断裂全新世古地震参数及模型[J]. 地球科学: 中国地质大学学报, 2013, 38(S1): 83-90. ZHANG Jun-long, REN Jin-wei, CHEN Chang-yun, et al. Paleo-earthquake parameters of Minjiang fault in Holocene[J]. Earth Science: Journal of China University of Geosciences, 2013, 38(S1): 83-90 (in Chinese). [36] 万森林, 张军龙, 刘明军, 等. 岷山断块的发震构造与地震活动性分析[J]. 地震, 2020, 40(2): 49-70. WAN Sen-lin, ZHANG Jun-long, LIU Ming-jun, et al. Seismogenic structure and seismic activity analysis of Minshan block[J]. Earthquake, 2020, 40(2): 49-70 (in Chinese). [37] 刘兴旺, 袁道阳, 邵延秀, 等. 甘肃迭部—白龙江南支断裂中东段晚第四纪构造活动特征[J]. 地球科学与环境学报, 2015, 37(6): 111-119. LIU Xing-wang, YUAN Dao-yang, SHAO Yan-xiu, et al. Characteristics of Late Quaternary tectonic activity in the middle-eastern segment of the southern branch of Diebu-Bailongjiang fault, Gansu[J]. Journal of Earth Sciences and Environment, 2015, 37(6): 111-119 (in Chinese). [38] Li H, Zhang Y, Dong S, et al. Neotectonics of the Bailongjiang and Hanan faults: New insights into late Cenozoic deformation along the eastern margin of the Tibetan Plateau[J]. Geological Society of America Bulletin, 2020, 132: 1845-1862. [39] 徐锡伟, 闻学泽, 陈桂华, 等. 巴颜喀拉地块东部龙日坝断裂带的发现及其大地构造意义[J]. 中国科学D辑: 地球科学, 2008, 38 (5): 529-542. XU Xi-wei, WEN Xue-ze, CHEN Gui-hua, et al. Discovery of the Longriba fault zone in Eastern Bayankala Block, China and its tectonic implication[J]. Science in China Series D: Earth Sciences, 2008, 38(5): 529-542 (in Chinese). [40] 薛灵文, 王刚, 李正友, 等. 东昆仑西大滩盆地晚新生代构造地貌简析[J]. 第四纪研究, 2016, 36(2): 420-432. XUE Ling-wen, WANG Gang, LI Zheng-you, et al. Late Cenozoic tectonic landform analysis of Xidatan basin, Eastern Kunlun[J]. Quaternary Sciences, 2016, 36(2): 420-432 (in Chinese). [41] 高锐, 王海燕, 马永生, 等. 松潘地块若尔盖盆地与西秦岭造山带岩石圈尺度的构造关系深地震反射剖面探测成果[J]. 地球学报, 2006, 27(5): 411-418. GAO Rui, WANG Hai-yan, MA Yong-sheng, et al. Tectonic relationships between the Zoigê basin of the Song-Pan block and the west Qinling orogen at lithosphere scale: Results of deep seismic reflection profiling[J]. Acta Geoscientia Sinica, 2006, 27(5): 411-418. [42] 嘉世旭, 张先康, 赵金仁, 等. 若尔盖盆地及周缘褶皱造山带地壳结构深地震测深结果[J]. 中国科学D辑: 地球科学, 2009, 39(9): 1200-1208. JIA Shi-xu, ZHANG Xian-kang, ZHAO Jin-ren, et al. Deep seismic sounding data reveal the crustal structures beneath Zoigê basin and its surrounding folded orogenic belts[J]. Science in China Series D: Earth Sciences, 2009, 39(9): 1200-1208 (in Chinese). [43] Zhang Q, Sandvol E, Ni J, et al. Rayleigh wave tomography of the northeastern margin of the Tibetan Plateau[J]. Earth and Planetary Science Letters, 2011, 304(1-2): 103-112. [44] Ye Z, Gao R, Li Q, et al. Seismic evidence for the North China Plate under thrusting beneath northeastern Tibet and its implications for plateau growth[J]. Earth and Planetary Science Letters, 2015, 426: 109-117. [45] Liu Z, Tian X, Gao R, et al. New images of the crustal structure beneath eastern Tibet from a high-density seismic array[J]. Earth and Planetary Science Letters, 2017, 480: 33-41. [46] Wang C, Gao R, Yin A, et al. A mid-crustal strain-transfer model for continental deformation: A new perspective from high-resolution deep seismic-reflection profiling across NE Tibet[J]. Earth and Planetary Science Letters, 2011, 306(3-4): 279-288. [47] 高锐, 王海燕, 王成善, 等. 青藏高原东北缘岩石圈缩短变形深地震反射剖面再处理提供的证据[J]. 地球学报, 2011, 32(5): 513-520. GAO Rui, WANG Hai-yan, WANG Cheng-shan, et al. Lithospheric deformation shortening of the northeastern Tibetan Plateau: Evidence from reprocessing of deep seismic reflection data[J]. Acta Geoscientia Sinica, 2011, 32(5): 513-520 (in Chinese). [48] 孙翔宇, 詹艳, 赵凌强, 等. 东昆仑断裂带东端和2017年九寨沟7.0级地震区深部电性结构探测[J]. 地震地质, 2020, 42(1): 182-197. SUN Xiang-yu, ZHAN Yan, ZHAO Ling-qiang, et al. Electrical structure of the 2017 MS7.0 Jiuzhaigou earthquake region and the eastern terminus of the East Kunlun fault[J]. Seismology and geology, 2020, 42(1): 182-197 (in Chinese). [49] 张军龙, 田勤俭, 张小龙, 等. DGPS方法在新构造研究中的应用探讨[J]. 地学前缘, 2008, 15(4): 290-297. ZHANG Jun-long, TIAN Qin-jian, ZHANG Xiao-long, et al. The applications of DGPS method in neo-tectonic research[J]. Earth Science Frontiers, 2008, 15(4): 290-297 (in Chinese). [50] James M R, Robson S. Straightforward reconstruction of 3D surfaces and topography with a camera: Accuracy and geoscience application[J]. Journal of Geophysical Research: Earth Surface, 2012, 117(F3): F03017. [51] 刘静, 陈涛, 张培震, 等. 机载激光雷达扫描揭示海原断裂带微地貌的精细结构[J]. 科学通报, 2013, 58(1): 41-45. LIU Jing, CHEN Tao, ZHANG Pei-zhen, et al. Illuminating the active Haiyuan fault, China by airborne light detection and ranging[J]. Chinese Science Bulletin, 2013, 58(1): 41-45 (in Chinese). [52] 尹金辉, 郑勇刚, 刘粤霞. 古地震14C年龄的日历年代校正[J]. 地震地质, 2005, 27(4): 678-688. YIN Jin-hui, ZHENG Yong-gang, LIU Yue-xia. An overview of radiocarbon calibration[J]. Seismology and Geology, 2005, 27(4): 678-688 (in Chinese). [53] 张克旗, 吴中海, 吕同艳, 等. 光释光测年法综述及进展[J]. 地质通报, 2015, 34(1): 183-203. ZHANG Ke-qi, WU Zhong-hai, LÜ Tong-yan, et al. Review and progress of OSL dating[J]. Geological Bulletin of China, 2015, 34(1): 183-203 (in Chinese). [54] 罗明, 陈杰, 刘进峰. 岩石暴露与埋藏面释光测年进展及其应用[J]. 地震地质, 2017, 39(1): 183-192. LUO Ming, CHEN Jie, LIU Jin-feng. Research progress on luminescence dating of rock surfaces and its application[J]. Seismology and Geology, 2017, 39(1): 183-192 (in Chinese). [55] 李建军, 张军龙, 郭玉涛. 晚更新世以来若尔盖盆地的地层划分及构造—气候意义[J]. 地震地质, 2016, 38(4): 950-963. LI Jian-jun, ZHANG Jun-long, GUO Yu-tao. Chronostratigraphic classification of Zoige basin since Late Pleistocene and its tectonic-climate significance[J]. Seismology and Geology, 2016, 38(4): 950-963 (in Chinese). [56] 王多杰, 徐小卫, 贾运鸿, 等. 库赛湖—玛曲断裂带东、 西大滩段全新世活动特征及古地震的研究[J]. 内陆地震, 1992, 6(2): 158-166. WANG Duo-jie, XU Xiao-wei, JIA Yun-hong, et al. Preliminary study on paleoearthquakes and the characteristics along the sections of Dongdatan and Xidatan on Kusai lake-Maqu fault zone during Holocene period[J]. Inland Earthquake, 1992, 6(2): 158-166 (in Chinese). [57] 李春峰, 贺群禄, 赵国光. 东昆仑活动断裂带东段全新世滑动速率研究[J]. 地震地质, 2004, 26(4): 676-687. LI Chun-feng, HE Qun-lu, ZHAO Guo-guang. Holocene slip rate along the eastern segment of the Kunlun fault[J]. Seismology and Geology, 2004, 26(4): 676-687 (in Chinese). [58] Li H, Van Der Woerd J, Tapponnier P, et al. Slip rate on the Kunlun fault at Hongshui Gou, and recurrence time of great events comparable to the 14/11/2001, Mw~7.9 Kokoxili earthquake[J]. Earth and Planetary Science Letters, 2005, 237(1-2): 285-299. [59] 杨顺虎, 付碧宏, 时丕龙. 东昆仑活动断裂带秀沟盆地段晚第四纪构造变形与地貌特征研究[J]. 第四纪研究, 2012, 32(5): 921-930. YANG Shun-hu, FU Bi-hong, SHI Pi-long. Late Quaternary structural deformation and tectono-geomorphic features along the Xiugou Basin segment, Eastern Kunlun fault zone[J]. Quaternary Sciences, 2012, 32(5): 921-930 (in Chinese). [60] 黄飞鹏, 任俊杰, 吕延武, 等. 东昆仑断裂带秀沟段晚第四纪滑动速率研究[J]. 地球科学进展, 2018, 33(3): 321-332. HUANG Fei-peng, REN Jun-jie, LÜ Yan-wu, et al. Late Quaternary slip rate of the Xiugou Segment, Eastern Kunlun Fault Zone[J]. Advances in Earth Science, 2018, 33(3): 321-332 (in Chinese). [61] 马寅生, 施炜, 张岳桥, 等. 东昆仑活动断裂带玛曲段活动特征及其东延[J]. 地质通报, 2005, 24(1): 30-35. MA Yin-sheng, SHI Wei, ZHANG Yue-qiao, et al. Characteristics of the activity of the Maqu segment of the East Kunlun active fault belt and its eastward extension[J]. Geological Bulletin of China, 2005, 24(1): 30-35 (in Chinese). [62] 何文贵, 袁道阳, 熊振, 等. 东昆仑断裂带东段玛曲断裂新活动特征及全新世滑动速率研究[J]. 地震, 2006, 26(4): 67-75. HE Wen-gui, YUAN Dao-yang, XIONG Zhen, et al. Study on characteristics of new activity and Holocene slip rate along Maqu fault of East Kunlun active fault [J]. Earthquake, 2006, 26(4): 67-75 (in Chinese). [63] Lin A, Guo J, Kano K-I, et al. Average Slip rate and recurrence interval of large-magnitude earthquakes on the western segment of the strike-slip Kunlun fault, northern Tibet[J]. Bulletin of the Seismological Society of America, 2006, 96(5): 1597-611. [64] Harkins N, Kirby E. Fluvial terrace riser degradation and determination of slip rates on strike-slip faults: An example from the Kunlun fault, China[J]. Geophysical Research Letters, 2008, 35(5): L05406. [65] Li J, Zhang Y Q, Li H L, et al. Revisiting Late Quaternary slip-rate along the Maqu segment of the Eastern Kunlun fault, northeast Tibet[J]. Acta Geologica Sinica, 2016, 90(2): 486-502. [66] Ren J, Xu X, Yeats R S, et al. Millennial slip rates of the Tazang fault, the eastern termination of Kunlun fault: Implications for strain partitioning in eastern Tibet[J]. Tectonophysics, 2013, 608: 1180-1200. [67] Gan W, Zhang P, Shen Z K, et al. Present-day crustal motion within the Tibetan Plateau inferred from GPS measurements[J]. Journal of Geophysical Research: Solid Earth, 2007, 112(B8): B08416. [68] Zheng G, Wang H, Wright T J, et al. Crustal deformation in the India-Eurasia collision zone from 25 years of GPS measurements[J]. Journal of Geophysical Research: Solid Earth, 2017, 122(11): 9290-9312. [69] Li Y C, Shan X J, Qu C Y. Geodetic constraints on the crustal deformation along the Kunlun fault and its tectonic implications[J]. Remote Sensing, 2019, 11(15): 1775. [70] Wang M, Shen Z-K. Present-day crustal deformation of continental China derived from GPS and its tectonic implications[J]. Journal of Geophysical Research: Solid Earth, 2020, 125(2): e2019JB018774. [71] Zhao D, Qu C, Bürgmann R, et al. Large-scale crustal deformation, slip-rate variation, and strain distribution along the Kunlun fault (Tibet) from Sentinel-1 InSAR observations (2015—2020)[J]. Journal of Geophysical Research: Solid Earth, 2022, 127(1): e2021JB022892. [72] 陈长云, 占伟, 郑智江, 等. 利用GPS和水准数据分析东昆仑断裂带东部及其邻区构造变形特征[J]. 地震研究, 2022, 45(1): 36-47. CHEN Chang-yun, ZHAN Wei, ZHENG Zhi-jiang, et al. Analyzing the tectonic deformation characteristics of the eastern part of the East Kunlun fault and its adjacent areas using GPS and leveling data[J]. Journal of Seismological Research, 2022, 45(1): 36-47 (in Chinese). [73] Wang Q, Zhang P Z, Freymueller J T, et al. Present-day crustal deformation in China constrained by global positioning system measurements[J]. Science, 2001, 294(5542): 574-577. [74] 付誉超, 刁法启, 朱亚戈, 等. 东昆仑断裂的震后粘弹性松弛效应对地壳变形的影响[J]. 大地测量与地球动力学, 2023, 43(1): 52-60. FU Yu-chao, DIAO Fa-qi, ZHU Ya-ge, et al. Post-seismic viscoelastic relaxation effect of the East Kunlun Fault on crustal deformation[J]. Journal of Geodesy and Geodynamics, 2023, 43(1): 52-60 (in Chinese). [75] Diao F Q, Xiong X, Wang R J, et al. Slip rate variation along the Kunlun fault (Tibet): Results from new GPS observations and a viscoelastic earthquake-cycle deformation model[J]. Geophysical Research Letters, 2019, 46(5): 2524-2533. [76] Zhu L, Ji L, Liu C. Interseismic slip rate and locking along the Maqin-Maqu Segment of the East Kunlun fault, northern Tibetan Plateau, based on Sentinel-1 images[J]. Journal of Asian Earth Sciences, 2021, 211: 104703. [77] Lin A M, Guo J M. Nonuniform slip rate and millennial recurrence interval of large earthquakes along the eastern segment of the Kunlun fault, northern Tibet[J]. Bulletin of the Seismological Society of America, 2008, 98(6): 2866-2878. [78] 袁道阳, 张培震, 刘百篪, 等. 青藏高原东北缘晚第四纪活动构造的几何图像与构造转换[J]. 地质学报, 2004, 78(2): 270-278. YUAN Dao-yang, ZHANG Pei-zhen, LIU Bai-chi, et al. Geometrical imagery and tectonic transformation of Late Quaternary active tectonics in northeastern margin of Qinghai-Xizang Plateau[J]. Acta Geologica Sinica, 2004, 78(2): 270-278 (in Chinese). [79] Yue H, Shen Z K, Zhao Z Y, et al. Rupture process of the 2021 M7.4 Maduo earthquake and implication for deformation mode of the Songpan-Ganzi terrane in Tibetan Plateau[J]. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(23): e2116445119. [80] 屈春燕, 赵德政, 单新建, 等. 2001年昆仑山地震同震—震后效应与2021年玛多地震关系探讨[J]. 地球物理学报, 2023, 66(7): 2741-2756. QU Chun-yan, ZHAO De-zheng, SHAN Xin-jian, et al. Coseismic and postseismic deformation of the 2001 MW7.8 Kunlun Mountain earthquake and its loading effect on the 2021 MW7.3 Maduo earthquake[J]. Chinese Journal of Geophysics, 2023, 66(7): 2741-2756 (in Chinese). [81] 李智敏, 李文巧, 李涛, 等. 2021年5月22日青海玛多MS7.4地震的发震构造和地表破裂初步调查[J]. 地震地质, 2021, 43(3): 722-737. LI Zhi-min, LI Wen-qiao, LI Tao, et al. Seismogenic fault and coseismic surface deformation of the Maduo MS7.4 earthquake in Qinghai, China: A quick report[J]. Seismology and Geology, 2021, 43(3): 722-737 (in Chinese). |
[1] | 杨攀新, 熊仁伟, 胡朝忠, 高原. 2023年甘肃积石山6.2级地震发震构造浅析[J]. 地震, 2024, 44(1): 153-159. |
[2] | 徐岳仁, 窦爱霞, 李智敏, 梁朋, 梁泽毓, 陆玲玉. 2023年12月18日甘肃积石山MS6.2地震触发次生灾害快速评估[J]. 地震, 2024, 44(1): 209-215. |
[3] | 张军龙, 徐岳仁, 李文巧, 陈峰. 中强地震发震构造标志浅析——以2023年积石山MS6.2地震为例[J]. 地震, 2024, 44(1): 226-234. |
[4] | 张军龙, 贡秋卓玛, 次仁多吉, 索朗南杰, 张建龙, 孙国涛, 司金罗布. 2021年西藏双湖MS5.8地震地表破裂及地震烈度初析[J]. 地震, 2023, 43(1): 65-73. |
[5] | 张国庆, 梁伟锋. 青藏高原东北缘ALOS AW3D30高程模型和EIGEN-6C4自由空气重力异常模型精度分析[J]. 地震, 2023, 43(1): 93-104. |
[6] | 杨业鑫, 孟国杰, 吴伟伟, 赵国强. 青藏高原东北缘地壳应变与应力特征研究[J]. 地震, 2022, 42(4): 1-13. |
[7] | 赵峥, 杨攀新, 熊仁伟, 胡朝忠. 洞庭湖盆地中强震不对称分布与地球动力学机制[J]. 地震, 2022, 42(4): 89-99. |
[8] | 王振宇, 付广裕, 刘泰, 郭凌冬, 陈伟, 房婷婷. 青藏高原东北缘重力势能与水平偏应力研究[J]. 地震, 2022, 42(2): 1-13. |
[9] | 肖雁峰, 胡晓斌, 谭凯. 基于InSAR约束的2020年中国西藏定日MW5.7地震同震滑动模型[J]. 地震, 2022, 42(2): 140-148. |
[10] | 李莹, 高原. 青藏高原东南缘地质构造基本形态与地震各向异性基本特征[J]. 地震, 2021, 41(4): 15-45. |
[11] | 张军龙, 母若愚. 2020年新疆于田MS6.4地震的地震迁移趋势[J]. 地震, 2021, 41(2): 47-61. |
[12] | 姜莉, 崔月菊, 杜建国, 丁志华, 刘永梅, 刘轶男. 青藏高原周缘三次强地震伴生的卫星高光谱遥感地球化学异常[J]. 地震, 2021, 41(2): 129-144. |
[13] | 陈兆辉, 陈石, 张双喜, 刘金钊. 青藏高原东南缘多尺度重力场及构造含义[J]. 地震, 2021, 41(1): 25-39. |
[14] | 罗毅, 田云锋, 张苏, 张景发. 利用InSAR技术研究青藏高原冻土形变特征[J]. 地震, 2020, 40(3): 179-188. |
[15] | 万森林, 张军龙, 刘明军, 贺为民, 李海龙, 郭长宝, 李智敏. 岷山断块的发震构造与地震活动性分析[J]. 地震, 2020, 40(2): 49-70. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||