地震 ›› 2024, Vol. 44 ›› Issue (4): 97-115.doi: 10.12196/j.issn.1000-3274.2024.04.007
天娇1, 朱瑞杰2, 琚长辉1, 田雷3, 周晓成1
收稿日期:
2024-04-11
修回日期:
2024-06-13
出版日期:
2024-10-31
发布日期:
2024-12-16
通讯作者:
周晓成, 研究员。 E-mail: zhouxiaocheng188@163.com
作者简介:
天娇(1990-), 女, 内蒙古赤峰人, 副研究员, 主要从事地热地质及地震流体地球化学研究。
基金资助:
TIAN Jiao1, ZHU Rui-jie2, JU Chang-hui1, TIAN Lei3, ZHOU Xiao-cheng1
Received:
2024-04-11
Revised:
2024-06-13
Online:
2024-10-31
Published:
2024-12-16
摘要: 温泉水因具有循环深度深、 升流速度快且受人为影响小等特征, 其化学与同位素组成携带深部地质环境变化的信息, 正在成为地震前兆观测热点。 本文基于国内外相关文献, 强调了温泉水观测在强震活跃的青藏高原、 新疆等自然条件艰苦, 人口稀疏地区的地震预测优越性; 总结了温泉水化学与同位素组成的地震前兆异常特征及响应机理; 提出了识别地震孕育发生过程中温泉中的水及溶质来源变化情况, 因为水文地球化学作用过程及地震异常信号是回答温泉水如何产生地震响应的关键问题; 认识到基于大数据分析与机器学习的地震预测研究可以在温泉水化学与同位素监测数据的分析中发挥重要作用; 展望了青藏高原东缘是深入研究温泉水文化学对地震异常响应机制的优选研究区。 本文旨在推进温泉水观测在地震监测、 预测领域的发展, 为提高防震减灾能力奠定基础。
中图分类号:
天娇, 朱瑞杰, 琚长辉, 田雷, 周晓成. 温泉水化学变化在地震监测预测中的研究进展[J]. 地震, 2024, 44(4): 97-115.
TIAN Jiao, ZHU Rui-jie, JU Chang-hui, TIAN Lei, ZHOU Xiao-cheng. Research Progress on Chemical Change of Hot Spring Water in Earthquake Monitoring and Prediction[J]. EARTHQUAKE, 2024, 44(4): 97-115.
[1] Kennedy D, Norman C. What don’t we know?[J]. Science, 2005, 309(5731): 75. [2] 陈运泰. 地震预测: 回顾与展望[J]. 中国科学(D辑), 2009, 39(12): 1633-1658. CHEN Yun-tai. Earthquake prediction: Retrospect and prospect[J]. Science in China (Series D), 2009, 39(12): 1633-1658 (in Chinese). [3] Wikelski M, Mueller U, Scocco P, et al. Potential short-term earthquake forecasting by farm animal monitoring[J]. Ethology, 2020, 126(9): 931-941. [4] Beroza G C, Segou M, Mostafa M, et al. Machine learning and earthquake forecasting-next steps[J]. Nature Communications, 2021, 12(1): 4761. [5] Jordan T H, Chen Y T, Gasparini P, et al. Operational earthquake forecasting: State of knowledge and guidelines for utilization[J]. Annals of Geophysics, 2011, 54(4): 315-391. [6] 陈顒, 林碧苍. 直面地震 预防为主[J]. 科学24小时, 2018(5): 4-6. CHEN Yong, LIN Bi-cang. Face the earthquake prevention first[J]. Science in 24 Hours, 2018(5): 4-6 (in Chinese). [7] 中国地震科学实验场科学设计编写组. 中国地震科学实验场科学设计[M]. 北京: 中国标准出版社, 2019. Scientific Design Group of China Seismic Experimental Site. Scientific design of China seismic experimental site[M]. Beijing: China Standard Press, 2019 (in Chinese). [8] 刘耀炜. 地震流体最新科学进展与发展方向[J]. 国际地震动态, 2004(10): 44-50. LIU Yao-wei. Advances and trends of researches on underground fluid related to seismogenesis[J]. Recent Developments in World Seismology, 2004(10): 44-50 (in Chinese). [9] 高小其, 刘耀炜, 孙小龙, 等. 我国地震构造地球化学监测研究现状[J]. 国际地震动态, 2018(8): 111-112. GAO Xiao-qi, LIU Yao-wei, SUN Xiao-long, et al. Research progress on earthquake tectonic geochemistry monitoring in China[J]. Recent Developments in World Seismology, 2018(8): 111-112 (in Chinese). [10] Paudel S R, Banjara S P, Wagle A, et al. Earthquake chemical precursors in groundwater: A review[J]. Journal of Seismology, 2018, 22: 1293-1314. [11] 孙小龙, 刘耀炜, 付虹, 等. 我国地震地下流体学科分析预报研究进展回顾[J]. 地震研究, 2020, 43(2): 216-231. SUN Xiao-long, LIU Yao-wei, FU Hong, et al. A review of study in the analysis and prediction of seismic subsurface fluids during past ten years in China[J]. Journal of Seismological Research, 2020, 43(2): 216-231 (in Chinese). [12] 李营, 陈志, 胡乐, 等. 流体地球化学进展及其在地震预测研究中的应用[J]. 科学通报, 2022, 67(13): 1404-1420. LI Ying, CHEN Zhi, HU Le, et al. Advances in seismic fluid geochemistry and its application in earthquake forecasting[J]. Chinese Science Bulletin, 2022, 67(13): 1404-1420 (in Chinese). [13] Barsukov V L, Varshal G M, Zamokina N S. Recent results of hydrogeochemical studies for earthquake prediction in the USSR[J]. Pure & Applied Geophysics, 1984, 122: 143-156. [14] King C Y. Gas geochemistry applied to earthquake prediction: An overview[J]. Journal of Geophysical Research: Solid Earth, 1986, 91(B12): 12269-12281. [15] Ohtake M. Search for precursors of the 1974 Izu-Hanto-Oki earthquake, Japan[J]. Pure & Applied Geophysics, 1976, 114: 1083-1093. [16] Wakita H. Earthquake prediction and geochemical studies in China[J]. Chinese Geophysics, 1978, 1(2): 443-457. [17] Raleigh B. Prediction of Haicheng earthquake[J]. Eos Transactions American Geophysical Union, 1977, 58: 236-272. [18] 国家地震局地下水影响因素研究组. 地震地下水动态及其影响因素分析[M]. 北京: 地震出版社, 1985. Research Group of Groundwater Influencing Factors, State Earthquake Bureau. Analysis of seismic groundwater dynamics and its influencing factors[M]. Beijing: Seismological Press, 1985 (in Chinese). [19] Chen Z, Du J, Zhou X, et al. Hydrochemistry of the hot springs in western Sichuan Province related to the Wenchuan MS8.0 earthquake[J]. The Scientific World Journal, 2014, 901432. [20] 杜建国, 周晓成, 陈志, 等. 新疆2012年新源—和静MS6.6地震前后北天山泥火山气体地球化学变化[M]//北京: 中国地球物理2013第四分会场论文集, 2013. DU Jian-guo, ZHOU Xiao-cheng, CHEN Zhi, et al. Gas geochemical changes of the mud volcano in Beitianshan before and after the Xinyuan-Hejing MS6.6 earthquake in 2012, Xinjiang[M]//Beijing: Chinese Geophysics 2013Proceedings of the fourth session, 2013 (in Chinese). [21] 上官志冠, 高松井. 滇西实验场区温泉碳同位素地震地球化学特征[J]. 地震, 1987(6): 25-35. SHANGGUAN Zhi-guan, GAO Song-jing. Seismic-geochemical characteristics of carbon isotope in hot springs in Dianxi experimental field[J]. Earthquake, 1987(6): 25-35 (in Chinese). [22] 肖琼, 沈立成, 袁道先, 等. 重庆北温泉水化学特征对汶川8.0级地震的响应[J]. 中国岩溶, 2009, 28(4): 385-390. XIAO Qiong, SHEN Li-cheng, YUAN Dao-xian, et al. Response of the Beiwenquan hot spring’s hydrochemical features in Chongqing to the Wenchuan earthquake of magnitude 8.0 in Sichuan[J]. Carsologica Sinica, 2009, 28(4): 385-390 (in Chinese). [23] 赵慈平, 虎雄林, 付虹, 等. 2001年10月27日云南永胜6.0级地震的前兆异常特征[J]. 地震研究, 2003, 26(2): 126-135. ZHAO Ci-ping, HU Xiong-lin, FU Hong, et al. Precursory anomalous characteristics before the Yongsheng earthquake of M6.0 on October 27, 2001 in Yunnan[J]. Journal of Seismological Research, 2003, 26(2): 126-135 (in Chinese). [24] Martinelli G. Previous, current, and future trends in research into earthquake precursors in geofluids[J]. Geosciences, 2020, 10(5): 189. [25] Martinelli G, Facca G, Genzano N, et al. Earthquake-related signals in Central Italy detected by hydrogeochemical and satellite techniques[J]. Frontiers in Earth Science, 2020, 8: 584716. [26] Song S R, Chen Y L, Liu C M, et al. Hydrochemical changes in spring waters in Taiwan: Implications for evaluating sites for earthquake precursory monitoring[J]. Terrestrial Atmospheric and Oceanic Sciences, 2005, 16(4): 745-762. [27] Doglioni C, Barba S, Carminati E, et al. Fault on-off versus coseismic fluids reaction[J]. Geoscience Frontiers, 2014, 5(6): 767-780. [28] Semenov R M, Lopatin M N, Chechel’nitskii V V. Dependence of the timing of hydrogeochemical earthquake precursor in the Southern Baikal area on the energy classes of the earthquakes and their epicentral distances[J]. Geochemistry International, 2019, 57: 341-348. [29] Favara R, Italiano F, Martinelli G. Earthquake-induced chemical changes in the thermal waters of the Umbria region during the 1997—1998 seismic swarm[J]. Terra Nova, 2001, 13(3): 227-233. [30] Zhang L, Guo L S, Zhou X C, et al. Temporal variations in stable isotopes and synchronous earthquake-related changes in hot springs[J]. Journal of Hydrology, 2021, 599: 126316. [31] 蒋凤亮, 李桂如, 王基化. 地震地球化学[M]. 北京: 地震出版社, 1989. JIANG Feng-liang, LI Gui-ru, WANG Ji-hua. Seismic geochemistry[M]. Beijing: Seismological Press, 1989 (in Chinese). [32] Barberio M D, Barbieri M, Billi A, et al. Hydrogeochemical changes before and during the 2016 Amatrice-Norcia seismic sequence (central Italy)[J]. Scientific Reports, 2017, 7: 11735. [33] Chaudhuri H, Bari W, Iqbal N, et al. Long range gas-geochemical anomalies of a remote earthquake recorded simultaneously at distant monitoring stations in India[J]. Geochemical Journal, 2011, 45(2): 137-156. [34] Hashemi S M, Negarestani A, Namvaran M, et al. An analytical algorithm for designing radon monitoring network to predict the location and magnitude of earthquakes[J]. Journal of Radioanalytical Nuclear Chemistry, 2013, 295(3): 2249-2262. [35] Hauksson E, Goddard J G. Radon earthquake precursor studies in Iceland[J]. Journal of Geophysical Research: Solid Earth, 1981, 86(B8): 7037-7054. [36] Lee Y C, Jeong C H, Lee Y J, et al. Variations of temperature, chemical component and helium gas of geothermal water by earthquake events in Pohang area[J]. The Journal of Engineering Geology, 2021, 31(4): 647-658. [37] Woith H, Daskalopoulou K, Zimmer M, et al. Multi-level gas monitoring: A new approach in earthquake research[J]. Frontiers in Earth Science, 2020, 8: 585733. [38] Wang B, Zhou X, Zhou Y, et al. Hydrogeochemistry and precursory anomalies in thermal springs of Fujian (Southeastern China) associated with earthquakes in the Taiwan strait[J]. Water, 2021, 13(24): 3523. [39] Zhang L, Guo L S, Wang Y, et al. Continuous monitoring of hydrogen and oxygen stable isotopes in a hot spring: Significance for distant earthquakes[J]. Applied Geochemistry, 2020, 112: 104488. [40] Tian J, Zhou X C, Yan Y C, et al. Earthquake-induced impulsive release of water in the fractured aquifer system: Insights from the long-term hydrochemical monitoring of hot springs in the Southeast Tibetan Plateau[J]. Applied Geochemistry, 2023, 148: 105553. [41] Li C, Zhou X, Yan Y, et al. Hydrogeochemical characteristics of hot springs and their short-term seismic precursor anomalies along the Xiaojiang fault zone, Southeast Tibet Plateau[J]. Water, 2021, 13(19): 2638. [42] Song S R, Ku W Y, Chen Y L, et al. Hydrogeochemical anomalies in the springs of the Chiayi area in west-central Taiwan as possible precursors to earthquakes[J]. Pure & Applied Geophysics, 2006, 163(4): 675-691. [43] Takahashi K, Tsuji T, Ikeda T, et al. Underground structures associated with horizontal sliding at Uchinomaki hot springs, Kyushu, Japan, during the 2016 Kumamoto earthquake[J]. Earth, Planets and Space, 2019, 71: 87. [44] Claesson L, Skelton A, Graham C, et al. Hydrogeochemical changes before and after a major earthquake[J]. Geology, 2004, 32(8): 641-644. [45] Sanz E, Pidal I M, Escavy J I, et al. Hydrogeological changes along a fault zone caused by earthquakes in the Moncayo massif (Iberian Chain, Spain)[J]. Sustainability, 2020, 12(21): 9034. [46] Long Y, Huang T, Zhang F, et al. Soil Column experimental study on the effect of soil structure disturbance on water chemistry[J]. International Journal of Environmental Research Public Health, 2022, 19(23): 15673. [47] Hosono T, Masaki Y. Post-seismic hydrochemical changes in regional groundwater flow systems in response to the 2016 MW7.0 Kumamoto earthquake[J]. Journal of Hydrology, 2020, 580: 124340. [48] Hosono T, Yamada C, Manga M, et al. Stable isotopes show that earthquakes enhance permeability and release water from mountains[J]. Nature Communications, 2020, 11(1): 2776. [49] Claesson L, Skelton A, Graham C, et al. The timescale and mechanisms of fault sealing and water-rock interaction after an earthquake[J]. Geofluids, 2007, 7(4): 427-440. [50] nan S, Akgül T, Seyis C, et al. Geochemical monitoring in the Marmara region (NW Turkey): A search for precursors of seismic activity[J]. Journal of Geophysical Research: Solid Earth, 2008, 113(B3): B03401. [51] Roeloffs E A. Hydrologic precursors to earthquakes: A review[J]. Pure & Applied Geophysics, 1988, 126: 177-209. [52] Sano Y, Nakajima J. Geographical distribution of 3He/4He ratios and seismic tomography in Japan[J]. Geochemical Journal, 2008, 42: 51-60. [53]Favara R, Inguaggiato S, Valenza M, et al. Hydrogeochemistry and stable isotopes of thermal springs: earthquake-related chemical changes along Belice Fault (Western Sicily)[J]. Applied Geochemistry, 2001, 16(1): 1-17. [54] Pérez N M, Hernández P A, Igarashi G, et al. Searching and detecting earthquake geochemical precursors in CO2-rich groundwaters from Galicia, Spain[J]. Geochemical Journal, 2008, 42(1): 75-83. [55] Boschetti T, Barbieri M, Barberio M D, et al. CO2 inflow and elements desorption prior to a seismic sequence, Amatrice-Norcia 2016, Italy[J]. Geochemistry, Geophysics, Geosystems, 2019, 20(5): 2303-2317. [56] Sortino F, Giammanco S, Bonfanti P, et al. Stress-induced changes in hydrothermal gas discharges along active faults near Mt. Etna volcano (Sicily, Italy)[J]. Tectonophysics, 2022, 836: 229388. [57] Thomas D. Geochemical precursors to seismic activity[J]. Pure & Applied Geophysics, 1988, 126: 241-266. [58] Andrén M, Stockmann G, Skelton A, et al. Coupling between mineral reactions, chemical changes in groundwater, and earthquakes in Iceland[J]. Journal of Geophysical Research: Solid Earth, 2016, 121(4): 2315-2337. [59] Onda S, Sano Y, Takahata N, et al. Groundwater oxygen isotope anomaly before the M6.6 Tottori earthquake in Southwest Japan[J]. Scientific Reports, 2018, 8(1): 1-7. [60] Franchini S, Agostini S, Barberio M D, et al. HydroQuakes, central Apennines, Italy: Towards a hydrogeochemical monitoring network for seismic precursors and the hydro-seismo-sensitivity of boron[J]. Journal of Hydrology, 2021, 598(3): 125754. [61] Skelton A, Andrén M, Kristmannsdóttir H, et al. Changes in groundwater chemistry before two consecutive earthquakes in Iceland[J]. Nature Geoscience, 2014, 7(10): 752-756. [62] Kim J, Lee J, Petitta M, et al. Groundwater system responses to the 2016 ML5.8 Gyeongju earthquake, South Korea[J]. Journal of Hydrology, 2019, 576: 150-163. [63] Wásteby N, Skelton A, Tollefsen E, et al. Hydrochemical monitoring, petrological observation, and geochemical modeling of fault healing after an earthquake[J]. Journal of Geophysical Research: Solid Earth, 2014, 119(7): 5727-5740. [64] Na J, Jiang X, Shi Z M, et al. Reactive transport process of earthquake-induced hydro-chemical changes in Guanding thermal spring, Western Sichuan, China[J]. Acta Geologica Sinica-English Edition, 2024, 98(1): 241-249. [65] 车用太, 鱼金子. 地震地下流体学[M]. 北京: 气象出版社, 2006. CHE Yong-tai, YU Jin-zi. Underground fluids and earthquake [M]. Beijing: Meteorological Publishing Press, 2006 (in Chinese). [66] Yaman M, Şaşmaz A, Kaya G, et al. Determination of elements in thermal springs for monitoring pre-earthquake activites by ICP-MS[J]. Atomic Spectroscopy, 2011, 32(5): 182-188. [67] Shi Z M, Zhang H, Wang G C. Groundwater trace elements change induced by M5.0 earthquake in Yunnan[J]. Journal of Hydrology, 2020, 581: 124424. [68] Barbieri M, Franchini S, Barberio M D, et al. Changes in groundwater trace element concentrations before seismic and volcanic activities in Iceland during 2010—2018[J]. Science of the Total Environment, 2021, 793: 148635. [69] Skelton A, Claesson L, Chakrapani G, et al. Coupling between seismic activity and hydrogeochemistry at the Shillong Plateau, Northeastern India[J]. Pure & Applied Geophysics, 2008, 165(1): 45-61. [70] Ingebritsen S E, Manga M. Hydrogeochemical precursors[J]. Nature Geoscience, 2014, 7(10): 697-698. [71] Gori F, Barberio M D. Hy Woith drogeochemical changes before and during the 2019 Benevento seismic swarm in central-southern Italy[J]. Journal of Hydrology, 2022, 604: 127250. [72] Martinelli G, Dadomo A, Heinicke J, et al. Recovery and processing of hydrological and hydrogeochemical parameters for researches on earthquake short-term precursors in Italy[J]. Bollettino di Geofisica Teorica e Applicata, 2015, 56(2): 115-128. [73] Kingsley S P, Biagi P F, Piccolo R, et al. Hydrogeochemical precursors of strong earthquakes: A realistic possibility in Kamchatka[J]. Physics Chemistry of the Earth, Part C: Solar, Terrestrial Planetary Science, 2001, 26(10-12): 769-774. [74] Amonte C, Asensio-Ramos M, Melián G V, et al. Hydrogeochemical temporal variations related to changes of seismic activity at Tenerife, Canary Islands[J]. Bulletin of Volcanology, 2021, 83(4): 1-18. [75] Biagi P F, Ermini A, Cozzi E, et al. Hydrogeochemical precursors in Kamchatka (Russia) related to the strongest earthquakes in 1988—1997[J]. Natural Hazards, 2000, 21(2-3): 263-276. [76] Biagi P F, Piccolo R, Ermini A, et al. Hydrogeochemical precursors of strong earthquakes in Kamchatka: Further analysis[J]. Natural Hazards and Earth System Sciences, 2001, 1(1): 9-14. [77] Yan Y, Zhou X, Liao L, et al. Hydrogeochemical characteristic of geothermal water and precursory anomalies along the Xianshuihe Fault Zone, Southwestern China[J]. Water, 2022, 14(4): 550. [78] Gutenberg B, Richter C F. Frequency of earthquakes in California[J]. Bulletin of the Seismological Society of America, 1944, 34(4): 185-188. [79] 袁爱璟, 王伟君, 彭菲, 等. 机器学习在地震预测中的应用进展[J]. 地震, 2021, 41(1): 51-66. YUAN Ai-jing, WANG Wei-jun, PENG Fei, et al. Recent progress of earthquake prediction with machine learning[J]. Earthquake, 2021, 41(1): 51-66 (in Chinese). [80] Zmazek B, Todorovski L, Džeroski S, et al. Application of decision trees to the analysis of soil radon data for earthquake prediction[J]. Applied Radiation and Isotopes, 2003, 58(6): 697-706. [81] Feng X, Zhong J, Yan R, et al. Groundwater radon precursor anomalies identification by EMD-LSTM model[J]. Water, 2022, 14(1): 69. [82] Torkar D, Zmazek B, Vaupoti J, et al. Application of artificial neural networks in simulating radon levels in soil gas[J]. Chemical Geology, 2010, 270(1-4): 1-8. [83] Haider T, Barkat A, Hayat U, et al. Identification of radon anomalies induced by earthquake activity using intelligent systems[J]. Journal of Geochemical Exploration, 2021, 222(1): 106709. [84] 朱瑞杰. 基于温泉水化学异常检测算法的地震预测研究以中国东南沿海地区为例[D]. 长春: 吉林大学, 2023. ZHU Rui-jie. Earthquake prediction based on anomaly detection algorithm of hot spring water chemistry: A case study of the southeast coastal region of China[D]. Changchun: Jilin University, 2023 (in Chinese). [85] Yin A, Harrison T M. Geologic evolution of the Himalayan-Tibetan orogen[J]. Annual Review of Earth and Planetary Sciences, 2000, 28(1): 211-280. [86] 许志琴, 李海兵, 唐哲民, 等. 大型走滑断裂对青藏高原地体构架的改造[J]. 岩石学报, 2011, 27(11): 3157-3170. XU Zhi-qin, LI Hai-bing, TANG Zhe-min, et al. The transformation of the terrain structures of the Tibet Plateau through large-scale strike-slip faults[J]. Acta Petrologica Sinica, 2011, 27(11): 3157-3170 (in Chinese). [87] Wang M, Shen Z K. Present-day crustal deformation of continental China derived from GPS and its tectonic implications[J]. Journal of Geophysical Research: Solid Earth, 2020, 125(2): e2019JB018774. [88] 张培震, 王伟涛, 甘卫军, 等. 青藏高原的现今构造变形与地球动力过程[J]. 地质学报, 2022, 96(10): 3297-3313. ZHANG Pei-zhen, WANG Wei-tao, GAN Wei-jun, et al. Present-day deformation and geodynamic processes of the Tibetan Plateau[J]. Acta Geologica Sinica, 2022, 96(10): 3297-3313 (in Chinese). [89] Deng Q D, Cheng S P, Ma J, et al. Seismic activities and earthquake potential in the Tibetan Plateau[J]. Chinese Journal of Geophysics, 2014, 57(5): 678-697. [90] Wang J. Catalog of destructive earthquakes on the Tibet Plateau since historical records. (-326~2021)[EB/OL]. (2022-09-13)[2024-05-18]. http://data.tpdc.ac.cn/. [91] 朱介寿, 王绪本, 杨宜海, 等. 青藏高原东缘的地壳流及动力过程[J]. 地球物理学报, 2017, 60(6): 2038-2057. ZHU Jie-shou, WANG Xu-ben, YANG Yi-hai, et al. The crustal flow beneath the eastern margin of the Tibetan Plateau and its process of dynamics[J]. Chinese Journal of Geophysics, 2017, 60(6): 2038-2057 (in Chinese). [92] Cheng J, Xu X W, Yao Q, et al. Seismic hazard of multi-segment rupturing for the Anninghe-Zemuhe-Daliangshan fault region, southeastern Tibetan Plateau: Constraints from geological and geodetic slip rates[J]. Natural Hazards, 2021, 107(2): 1501-1525. [93] Wang H, Ran Y K, Li Y B, et al. A 3400-year-long paleoseismologic record of earthquakes on the southern segment of Anninghe fault on the southeastern margin of the Tibetan Plateau[J]. Tectonophysics, 2014, 628: 206-217. [94] Wen X Z, Fan J, Yi G X, et al. A seismic gap on the Anninghe fault in western Sichuan, China[J]. Science in China Series D: Earth Sciences, 2008, 51(10): 1375-1387. [95] 徐晶, 邵志刚, 刘静, 等. 川滇菱形块体东边界库仑应力演化及强震发生概率估算[J]. 地球物理学报, 2019, 62(11): 4189-4213. XU Jing, SHAO Zhi-gang, LIU Jing, et al. Coulomb stress evolution and future earthquake probability along the eastern boundary of the Sichuan-Yunnan block[J]. Chinese Journal of Geophysics, 2019, 62(11): 4189-4213 (in Chinese). [96] 徐锡伟, 闻学泽, 郑荣章, 等. 川滇地区活动块体最新构造变动样式及其动力来源[J]. 中国科学(D辑), 2003, 33(S1): 151-162. XU Xi-wei, WEN Xue-ze, ZHENG Rong-zhang, et al. The latest tectonic change patterns and power sources of active blocks in Sichuan-Yunnan area[J]. Science in China (Series D), 2003, 33(S1): 151-162 (in Chinese). [97]Li Z, Zhou X C, Xu Q L, et al. Hydrochemical characteristics of hot springs in the intersection of the red river fault zone and the Xiaojiang fault zone, Southwest Tibet Plateau[J]. Water, 2022, 14(16): 2525. [98]Liu J, Zhou X C, Li Y, et al. Relationship between hydrogeochemical characteristics of hot springs and seismic activity in the Jinshajiang fault zone, Southeast Tibetan Plateau[J]. Frontiers in Earth Science, 2023, 10: 1015134. [99]Zhou R, Zhou X C, Li Y, et al. Hydrogeochemical and isotopic characteristics of the hot springs in the Litang fault zone, Southeast Qinghai-Tibet Plateau[J]. Water, 2022, 14(9): 1496. [100]Zhou X C, Du J G, Chen Z, et al. Geochemistry of soil gas in the seismic fault zone produced by the Wenchuan MS8.0 earthquake, southwestern China[J]. Geochemical Transactions, 2010, 11(5): 1-10. [101]Zhou X C, Liu L, Chen Z, et al. Gas geochemistry of the hot spring in the Litang fault zone, Southeast Tibetan Plateau[J]. Applied Geochemistry, 2017, 79(B6): 17-26. [102]Zhou X C, Yan Y C, Fang W Y, et al. Short-term seismic precursor anomalies of hydrogen concentration in Luojishan hot spring bubbling gas, Eastern Tibetan Plateau[J]. Frontiers in Earth Science, 2021, 8: 586279. [103]Zhou H L, Zhou X C, Su H J, et al. Hydrochemical characteristics of earthquake-related thermal springs along the Weixi-Qiaohou fault, Southeast Tibet Plateau[J]. Water, 2022, 14(1): 132. |
[1] | 廖丽霞, 周跃勇, 邓聪, 黄艳丹. 福建地区地震温泉地球化学观测网点勘选方法及指标探索[J]. 地震, 2024, 44(4): 209-224. |
[2] | 陈其峰, 李营, 张帆, 孙宇飞, 贾震, 杜桂林, 曹一, 冯恩国. 张渤断裂带山东东部地热水地球化学特征分析[J]. 地震, 2024, 44(3): 21-37. |
[3] | 王熠熙, 周志华, 李悦, 邵永新, 李赫, 李笑博, 龚永俭. 天津宝坻地区地下水水文地球化学特征[J]. 地震, 2024, 44(3): 38-54. |
[4] | 李静超, 周晓成, 何苗, 颜玉聪, 天娇, 董金元. 四川红莫温泉的水文地球化学特征及其与地震的关系[J]. 地震, 2024, 44(3): 108-123. |
[5] | 李娜, 向阳, 李新勇, 汪成国. 不同赋存形式H2映震特征及机理分析[J]. 地震, 2024, 44(3): 138-155. |
[6] | 芮雪莲, 杨耀, 龙锋, 赵敏, 官致君. 四川乡城然乌温泉水文地球化学特征和成因分析[J]. 地震, 2024, 44(3): 173-195. |
[7] | 席继楼, 孙汉荣, 薛兵, 高尚华, 王同利, 崔博闻, 华培学, 王倩倩, 李珍. 地震监测站网评估指标体系研究[J]. 地震, 2022, 42(4): 149-158. |
[8] | 王万丽, 周晓成, 石宏宇, 颜玉聪, 欧阳澍培, 刘峰立, 房文亚, 李鹏飞. 云南省南汀河断裂带温泉水文地球化学特征[J]. 地震, 2022, 42(2): 14-32. |
[9] | 周连庆, 赵翠萍, 张捷, 车时. 中国地震科学实验场人工智能实时地震监测分析系统的应用与展望[J]. 地震, 2021, 41(3): 1-21. |
[10] | 姜莉, 崔月菊, 王海燕, 孙凤霞, 王喜龙, 杜建国. 辽东南地区地下水化学时空变化[J]. 地震, 2021, 41(3): 114-130. |
[11] | 颜玉聪, 周晓成, 李静超, 刘峰立, 欧阳澍培. 2020年新疆于田MS6.4地震温泉水文地球化学异常特征研究[J]. 地震, 2021, 41(2): 113-128. |
[12] | 石宏宇, 王万丽, 周晓成, 颜玉聪, 李鹏飞, 姜莉, 陈志. 四川石棉公益海温泉水文地球化学特征[J]. 地震, 2021, 41(1): 93-115. |
[13] | 苏鹤军, 曹玲玲, 张慧, 李晨桦, 周慧玲. 判识水氡地震前兆的方法——以甘肃清水温泉水氡异常为例[J]. 地震, 2020, 40(4): 198-213. |
[14] | 蒋雨函, 高小其, 王阳洋, 张磊. 中国新疆北天山和台湾南部陆地泥火山研究进展[J]. 地震, 2020, 40(3): 65-82. |
[15] | 王熠熙, 邵永新, 李悦, 王博, 刘双庆, 李赫, 王喜龙, 龚永俭. 基于多种方法的宝坻新井水位异常分析[J]. 地震, 2020, 40(1): 172-183. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||