[1] 王锦红, 蒋海昆. 基于地震观测数据的机器学习地震预测研究综述[J]. 地震研究, 2023, 46(2): 173-187. WANG Jin-hong, JIANG Hai-kun. Research progress in field of earthquake prediction by machine learning based on seismic data[J]. Journal of Seismological Research, 2023, 46(2): 173-187 (in Chinese). [2] Moratto L, Orlecka-Sikora B, Costa G, et al. A deterministic seismic hazard analysis for shallow earthquakes in Greece[J]. Tectonophysics, 2007, 442(1-4): 66-82. [3] 陈棋福, 李乐, 姜金钟. 中国大陆强震孕育深处的变形模式构建[J]. 地震研究, 2020, 43(2): 232-240. CHEN Qi-fu, LI Le, JIANG Jin-zhong. Deep deformation pattern of strong earthquake in Chinese mainland[J]. Journal of Seismological Research, 2020, 43(2): 232-240 (in Chinese). [4] 王坦, 李瑜, 张锐, 等. GPS在我国地震监测中的应用现状与发展展望[J]. 地震研究, 2021, 44(2): 192-207. WANG Tan, LI Yu, ZHANG Rui, et al. GPS in earthquake monitoring in China: Current situation and prospect[J]. Journal of Seismological Research, 2021, 44(2): 192-207 (in Chinese). [5] Gutenberg B, Richter C F. Frequency of earthquakes in California[J]. Bulletin of the Seismological Society of America, 1944, 34(4): 185-188. [6] Cornell C A. Engineering seismic risk analysis[J]. Bulletin of the seismological society of America, 1968, 58(5): 1583-1606. [7] Papanastassiou D, Latoussakis J, Stavrakakis G, et al. The Aegean Sea (Greece) earthquake sequence of 25 March 1986: An application of the v-value method for earthquake prediction[J]. Natural Hazards, 1989, 2: 105-114. [8] Zhuang J, Ogata Y, Vere-Jones D. Stochastic declustering of space-time earthquake occurrences[J]. Journal of the American Statistical Association, 2011, 97(458): 369-380. [9] Shebalin P N, Narteau C, Zechar J D, et al. Combining earthquake forecasts using differential probability gains[J]. Earth, Planets and Space, 2014, 66(1): 37. [10] Shcherbakov R, Zhuang J C, Zöller G, et al. Forecasting the magnitude of the largest expected earthquake[J]. Nature Communications, 2019, 10(1): 4051. [11] Hashemi S M, Negarestani A, Namvaran M, et al. An analytical algorithm for designing radon monitoring network to predict the location and magnitude of earthquakes[J]. Journal of Radioanalytical and Nuclear Chemistry, 2013, 295(3): 2249-2262. [12] 赵永红, 谢雨晴, 王航, 等. 地震预测方法Ⅴ: 地下流体方法[J]. 地球物理学进展, 2017, 32(4): 1539-1547. ZHAO Yong-hong, XIE Yu-qing, WANG Hang, et al. Earthquake prediction V: Subsurface fluid method[J]. Progress in Geophysics, 2017, 32(4): 1539-1547 (in Chinese). [13] Iwata T, Umeno K. Preseismic ionospheric anomalies detected before the 2016 Kumamoto earthquake[J]. Journal of Geophysical Research: Space Physics, 2017, 122(3): 3602-3616. [14] Stephens M. Gravitational disturbances could predict earthquake size[J]. Physics World, 2018, 31(1): 5. [15] Schmidhuber J. Deep learning in neural networks: An overview[J]. Neural Networks, 2015, 61: 85-117. [16] Mignan A, Broccardo M. One neuron versus deep learning in aftershock prediction[J]. Nature, 2019, 574: E1-E3. [17] 袁爱璟, 王伟君, 彭菲, 等. 机器学习在地震预测中的应用进展[J]. 地震, 2021, 41(1): 51-66. YUAN Ai-jing, WANG Wei-jun, PENG Fei, et al. Recent progress of earthquake prediction with machine learning[J]. Earthquake, 2021, 41(1): 51-66 (in Chinese). [18] 胡琪鑫, 徐亚. 地球物理信号特征识别与解释的机器学习方法及应用综述[J]. 地球物理学进展, 2022, 37(6): 2395-2407. HU Qi-xin, XU Ya. Review of machine learning and application of geophysical signal feature recognition and interpretation[J]. Progress in Geophysics, 2022, 37(6): 2395-2407 (in Chinese). [19] 贾漯昭, 孟令媛, 闫睿. 深度学习在地震监测预报中的应用进展[J]. 地震研究, 2024, 47(3): 336-349. JIA Luo-zhao, MENG Ling-yuan, YAN Rui. Advancements of deep learning in seismic monitoring and prediction[J]. Journal of Seismological Research, 2024, 47(3): 336-349 (in Chinese). [20] Panakkat A, Adeli H. Neural network models for earthquake magnitude prediction using multiple seismicity indicators[J]. International Journal of Neural Systems, 2007, 17(1): 13-33. [21] González J, Yu W, Telesca L. Earthquake magnitude prediction using recurrent neural networks[J]. Multidisciplinary Digital Publishing Institute Proceedings, 2019, 24(1): 22. [22] Wu H, Zhang B, Lin T F, et al. White noise attenuation of seismic trace by integrating variational mode decomposition with convolutional neural network[J]. Geophysics, 2019, 84(5): V307-V317. [23] Mousavi S M, Beroza G C. A machine-learning approach for earthquake magnitude estimation[J]. Geophysical Research Letters, 2020, 47(1): e2019GL085976. [24] 冯德益, 蒋淳, 汪德馨, 等. 神经网络方法在地震预报研究中的初步应用[J]. 地震, 1994, 14(4): 23-29. FENG De-yi, JIANG Chun, WANG De-xin, et al. Preliminary application of neural network method in earthquake prediction research[J]. Earthquake, 1994, 14(4): 23-29 (in Chinese). [25] Narayanakumar S, Raja K. A BP artificial neural network model for earthquake magnitude prediction in Himalayas, India[J]. Circuits and Systems, 2016, 7(11): 3456-3468. [26] Asim K M, Martínez-álvarez F, Basit A, et al. Earthquake magnitude prediction in Hindukush region using machine learning techniques[J]. Natural Hazards, 2017, 85: 471-486. [27] Perol T, Gharbi M, Denolle M. Convolutional neural network for earthquake detection and location[J]. Science Advances, 2018, 4(2): e1700578. [28] 杨黎薇, 林国良, 邱志刚, 等. 基于人工神经元网络和多特征参数的预警震级估算[J]. 地震研究, 2018, 41(2): 302-310. YANG Li-wei, LIN Guo-liang, QIU Zhi-gang, et al. Study on magnitude estimation of earthquake early warning based on various characteristic parameters and artificial neural networks[J]. Journal of Seismological Research, 2018, 41(2): 302-310 (in Chinese). [29] Berhich A, Belouadha F Z, Kabbaj M I. LSTM-based models for earthquake prediction[C]//Proceedings of the 3rd International Conference on Networking, Information Systems & Security, 2020: 1-7. [30] Huang X, Song J Y, Jin H D. The casualty prediction of earthquake disaster based on extreme learning machine method[J]. Natural Hazards, 2020, 102(3): 873-886. [31] 刘杰, 曹俊兴, 蒋旭东, 等. 基于GRU的汶川地震川西气井压力前兆异常识别研究[J]. 地球物理学进展, 2021, 36(3): 901-907. LIU Jie, CAO Jun-xing, JIANG Xu-dong, et al. Research on recognition of pressure precursor anomaly of Gas well in western Sichuan before Wenchuan earthquake based on GRU[J]. Progress in Geophysics, 2021, 36(3): 901-907 (in Chinese). [32] 郭少文, 雷奇果, 周坤. 极震区烈度的ELM预测模型[J]. 华南地震, 2022, 42(1): 140-146. GUO Shao-wen, LEI Qi-guo, ZHOU Kun. Seismic intensity prediction model in meizoseismal area based on ELM[J]. South China Journal of Seismology, 2022, 42(1): 140-146 (in Chinese). [33] Dragomiretskiy K, Zosso D. Variational mode decomposition[J]. IEEE Transactions on Signal Processing, 2013, 62(3): 531-544. [34] 刘长良, 武英杰, 甄成刚. 基于变分模态分解和模糊C均值聚类的滚动轴承故障诊断[J]. 中国电机工程学报, 2015, 35(13): 3358-3365. LIU Chang-liang, WU Ying-jie, ZHEN Cheng-gang. Rolling bearing fault diagnosis based on variational mode decomposition and fuzzy C means clustering[J]. Proceedings of the CSEE, 2015, 35(13): 3358-3365 (in Chinese). [35] Ling Q, Zhang Q, Zhang J, et al. Prediction of landslide displacement using multi-kernel extreme learning machine and maximum information coefficient based on variational mode decomposition: A case study in Shaanxi, China[J]. Natural Hazards, 2021, 108: 925-946. [36] 闫洪波, 沈雅楠, 那毅然. 基于二维变分模态分解与自适应分数阶积分的图像去噪方法[J]. 科学技术与工程, 2022, 22(7): 2800-2805. YAN Hong-bo, SHEN Ya-nan, NA Yi-ran. Image denoising method based on two-dimensional variational modal decomposition and adaptive fractional integration[J]. Science Technology and Engineering, 2022, 22(7): 2800-2805 (in Chinese). [37] Tiu E S K, Huang Y F, Ng J L, et al. An evaluation of various data pre-processing techniques with machine learning models for water level prediction[J]. Natural Hazards, 2022, 110: 121-153. [38] Tripathy R K, Sharma L N, Dandapat S. Detection of shockable ventricular arrhythmia using variational mode decomposition[J]. Journal of Medical Systems, 2016, 40(4): 79. [39] Xue Y J, Cao J X, Wang D X, et al. Application of the variational-mode decomposition for seismic time-frequency analysis[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(8): 3821-3831. [40] Proao E, Benítez D S, Lara-Cueva R, et al. On the use of variational mode decomposition for seismic event detection[C]//2018 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC). IEEE, 2018: 1-6. [41] Paternina M R A, Tripathy R K, Zamora-Mendez A, et al. Identification of electromechanical oscillatory modes based on variational mode decomposition[J]. Electric Power Systems Research, 2019, 167: 71-85. [42] 华莉, 杨俭, 袁天辰, 等. 基于VMD和BP神经网络的轨道病害诊断方法[J]. 电子科技, 2022, 35(4): 40-46. HUA Li, YANG Jian, YUAN Tian-chen, et al. Track disease diagnosis method based on VMD and BP neural network[J]. Electronic Science and Technology, 2022, 35(4): 40-46 (in Chinese). [43] 李媛, 邓嘉瑞, 陈飞, 等. 基于VMD的非平稳地震动信号模拟[J]. 科技通报, 2023, 39(8): 94-99. LI Yuan, DENG Jia-rui, CHEN Fei, et al. Simulation of non-stationary ground vibration signals based on VMD[J]. Bulletin of Science and Technology, 2023, 39(8): 94-99 (in Chinese). [44] 王肖, 周怀来, 王元君, 等. 基于MP与GA-VMD结合的地震资料去噪方法研究[J]. 物探化探计算技术, 2023, 45(2): 156-168. WANG Xiao, ZHOU Huai-lai, WANG Yuan-jun, et al. Research on seismic data denoising method based on MP and GA-VMD[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2023, 45(2): 156-168 (in Chinese). |