欢迎访问《地震》,

地震 ›› 2015, Vol. 35 ›› Issue (2): 26-33.

• • 上一篇    下一篇

基于球体位错理论的地震形变分析

田平, 金红林   

  1. 中国地震局地震预测研究所, 北京 100036
  • 收稿日期:2014-07-21 出版日期:2015-04-30 发布日期:2020-06-24
  • 作者简介:田平(1987-), 男, 黑龙江大庆人, 在读硕士研究生, 主要从事地形变反演等研究。
  • 基金资助:
    东北亚地震、 海啸和火山合作研究计划项目(ZRH2014-01-02)

Calculation of Seismic Deformation Response Range Based on Spherical Dislocation Theory

TIAN Ping, JIN Hong-lin   

  1. Institute of Earthquake Science, CEA, Beijing 100036, China
  • Received:2014-07-21 Online:2015-04-30 Published:2020-06-24

摘要: 地震形变分布特征主要取决于地震断层破裂特征, 不同震级的地震引起的形变响应范围存在差异。 本文中, 我们基于球体位错理论, 以5 mm的形变测量值为基准, 针对逆冲型和走滑型地震断层, 分析了MW6.0~MW8.5地震在跨断层法方向上的形变响应范围, 提出了地震震级和响应范围的经验公式, 并与实际地震(2001年昆仑山口西地震、 2013年芦山地震等)结果进行了比较。 比较结果显示, 经验公式计算结果和实际观测值相符合, 可以用于估算MW6.0~MW8.5地震在跨断层法方向的形变响应范围, 同时为地震远场形变特征分析与同震、 震后形变测量点布设等方面提供参考数据。

关键词: 地震形变, 地震断层破裂特征, 球体位错, 地震震级

Abstract: Distribution of seismic deformation depends mainly on earthquake fault rupture characteristics, and earthquakes of different magnitude have different deformation response ranges. In this paper, based on heterogeneous spherical dislocation theory, considering the precision of 5 mm, coseismic deformation response ranges are calculated for thrust and strike-slip earthquakes of magnitude MW6.0 to MW8.5. Then we calculated the empirical formulae of earthquake magnitudes and response ranges, and compared them with the results of actual earthquakes (the 2001 Kunlun earthquake and the 2013 Lushan earthquakes). Results show that response ranges from the empirical formula match the observed data well, and these empirical formulae can be used to estimate seismic deformation response ranges with the magnitude range from MW6.0 to MW8.5, and to provide reference information for analysing far field earthquake deformation characteristics and coseismic and postseismic layout of measuring points.

Key words: Seismic deformation response, Spherical dislocation theory, Fault rupture characteristics

中图分类号: