[1] Chiodini G, Caliro S, Cardellini C, et al. Geochemical evidence for and characterization of CO2 rich gas sources in the epicentral area of the Abruzzo 2009 earthquakes[J]. Earth and Planetary Science Letters, 2011, 304: 389-398. [2] Walia V, Mahajan S, Kumar A. Fault delineation study using soil-gas method in the Dharamsala area, NW Himalayas, India[J]. Radiation Measurements, 2008, 43: S337-S342. [3] Al-Hilal M, Al-Ali A. The role of soil gas radon survey in exploring unknown subsurface faults at Afamia B dam, Syria[J]. Radiation Measurements, 2010, 45: 219-224. [4] Yang T F, Walia V, Chyi L L, et al. Variations of soil radon and thoron concentrations in a fault zone and prospective earthquakes in SW Taiwan[J]. Radiation Measurements, 2005, 40: 496-502. [5] Fu C C, Yang T F, Walia V, et al. Variations of soil-gas composition around the active Chihshang Fault in a plate suture zone, eastern Taiwan[J]. Radiation Measurement, 2009, 44: 940-944. [6] King C Y. Gas geochemistry applied to earthquake pre-diction. An overview[J]. Journal of Geophysical Research, 1986, 91: 12269-12281. [7] Etiope G, Martinelli G. Migration of carrier and trace gases in the geosphere: an overview[J]. Physics of the Earth and Planetary Interiors , 2002, 129: 185-204. [8] Irwin W P, Barens I. Tectonic relations of carbon-dioxide discharges and earthquake[J]. Journal of geophysical research, 1980, 85: 3115-3121. [9] 康春丽, 杜建国. 汞的地球化学特征及其映震效能[J]. 地质地球化学, 1999, 27(1): 79-84. [10] Koval P V, Udodov Y N, San’kov V A,et al. Geochemical activity of faults in the Baikal Rift Zone (Mercury, Radon, and Thoron)[J]. Doklady Earth Sciences, 2006, 409: 912-915. [11] Wang G, Liu C, Wang J, et al. The use of soil mercury and radon gas surveys to assist the detection of concealed faults in Fuzhou City, China[J]. Environmental Geology, 2006, 51(1): 83-90. [12] Mahajan S, Walia V, Bajwa B S, et al. Soil-gas radon/helium surveys in some neotectonic areas of NW Himalayan foothills, India[J]. Natural Hazards and Earth System Sciences, 2010, 10: 1121-1127. [13] Vaupotic J, Gregori A, Kobal I, et al. Radon concentration in soil gas and radon exhalation rate at the Ravne Fault in NW Slovenia[J]. Natural Hazards and Earth System Sciences, 2010, 10(4): 895-899. [14] Walia V, Lin S J, Fu C C, et al. Soil-gas monitoring: A tool for fault delineation studies along Hsinhua Fault (Tainan), Southern Taiwan [J]. Applied Geochemistry, 2010, 25(4): 602-607. [15] Zhou X C, Du J G, Chen Z, et al. Geochemistry of soil gas in the seismic fault zone produced by the Wenchuan MS8.0 earthquake, southwestern China[J]. Geochemical Transactions, 2010, 11: 1-10. [16] 陈绍绪, 张跃刚, 乔子云, 等. 晋蒙冀交界地区主要断裂的现今活动[J]. 华北地震科学, 2003, 21(2): 16-22. [17] 方仲景, 段瑞涛, 郑炳华, 等. 河北省怀安盆地北缘断裂活动性研究[J]. 华北地震科学, 1994, 12(4): 25-33. [18] 邵永新, 杨绪连, 李一兵. 海河隐伏活断层探测中土壤气氡和气汞测量及其结果[J]. 地震地质, 2007, 29(3): 627-636. [19] 李营, 杜建国, 王富宽, 等. 延怀盆地土壤气体地球化学特征[J]. 地震学报, 2009, 31(1): 82-91. [20] Wang X, Li Y, Du J G, et al. Correlations between radon in soil gas and the activity of seismogenic faults in the Tangshan area, North China[J]. Radiation Measurement, 2014, 60: 8-14. [21] 《2006—2020年中国大陆地震危险区与地震灾害损失预测研究》项目组. 2006—2020年中国大陆地震危险区与地震灾害损失预测研究[M]. 北京: 地震出版社. 2007: 84-85. [22] 徐锡伟, 吴为民, 张先康. 首都圈地区地壳最新构造变动与地震[M]. 北京: 科学出版社, 2002. [23] 韦红钢, 杨文涛, 高幼龙. 怀安县地质灾害调查及防治建议[J]. 中国水土保持, 2011, 3: 27-29. [24] 周晓成, 郭文生, 杜建国, 等. 呼和浩特地区隐伏断层土壤气氡、 汞地球化学特征[J]. 地震, 2007, 27(1): 70-76. [25] Iskander D, Yamazawa H, Iida T. Quantification of dependency of radon emanation power on soil temperature[J]. Applied Radiation and Isotopes, 2004, 60: 971-973. [26] Fujiyoshi R, Sakamoto K, Imanishi T, et al. Meteorological parameters contributing to variability in 222Rn activity concentrations in soil gas at a site in Sapporo, Japan[J]. Science of the Total Environment, 2006, 370: 224-234. [27] Lehmann B, Ihly B, Salzmann S, et al. An automatic static chamber for continuous 220Rn and 222Rn flux measurements from soil[J]. Radiation Measurements, 2004, 38: 43-50. [28] Wang D, He L, Shi X, et al. Release flux of mercury from different environmental surfaces in Chongqing, China[J]. Chemosphere, 2006, 64: 1845-1854. [29] Tuccimei P, Soligo M. Correcting for interference in soil radon flux measurements[J]. Radiation Measurements, 2008, 43(1): 102-105. [30] Toutain J P, Baubron J C. Gas geochemistry and seismotectonics: A review [J]. Tectonophysics, 1999, 304: 1-27. [31] Walia V, Yang T F, Hong W L, et al. Geochemical variation of soil-gas composition for fault trace and earthquake precursory studies along the Hsincheng fault in NW Taiwan[J]. Applied Radiation and Isotopes, 2009, 67: 1855-1863. [32] Etiope G, Lombardi S. Evidence for radon transport by carrier gas through faulted clays in italy [J]. Journal of Radioanalytical and Nuclear Chemistry, 1995, 193(2): 291-300. [33] Ciotoli G, Lombardi S, Annunziatellis A. Geostatistical analysis of soil gas data in a high seismic intermontane basin: Fucino Plain, central Italy [J]. Journal of Geophysical Research, 2007, 112: B05407.1-B05407.23. [34] Crockett R, Perrier F, Richon P. Spectral-decomposition techniques for the identification of periodic and anomalous phenomena in radon time-series [J]. Natural Hazards and Earth System Sciences, 2010, 10(3): 559-564. [35] Raich J W, Schlesinger W H. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate[J]. Tellus, 1992, 44(B): 81-99. [36] Lewicki J L, Brantley S L. CO2 degassing along the San Andreas Fault, Parkfield, California[J]. Geophysical Research Letters, 2000, 27(1): 5-8. [37] Baubron J C, Rigo A, Toutain J P. Soil gas profiles as a tool to characterise active tectonic areas: the Jaut Pass example (Pyrenees, France) [J]. Earth and Planetary Science Letters, 2002, 196: 69-81. |