[1] |
汪一鹏, 马瑾, 李传友. 南北地震带强震迁移特征及其与南亚地震带的联系[J]. 地震地质, 2007, 29(1): 1-14.
|
|
WANG Yi-peng, MA Jin, LI Chuan-you. The Migration Characteristics of Strong Earthquakes on the North-South Seismic Belt and Its Relation with the South Asia Seismic Belt[J]. Seismology and Geology, 2007, 29(1): 1-14 (in Chinese).
|
[2] |
中国地震局震害防御司. 中国近代地震目录[M]. 北京: 中国科学技术出版社, 1999.
|
|
Department of Disaster Prevention, China Earthquake Administration. Catalog of Chinese Earthquakes[M]. Beijing: China Science and Technology Press, 1999 (in Chinese).
|
[3] |
尹欣欣, 郭安宁, 赵韬, 等. 四川长宁MS6.0地震区域构造应力场特征分析[J]. 地震工程学报, 2019, 41(5): 1215-1220.
|
|
YIN Xin-xin, GUO An-ning, ZHAO Tao, et al. Characteristics of the Regional Tectonic Stress Field of the Changning MS6.0 Earthquake, Sichuan Province[J]. China Earthquake Engineering Journal, 2019, 41(5): 1215-1220 (in Chinese).
|
[4] |
李艳娥, 陈学忠. 长宁地震前应力变化及震前触发过程探索研究[J]. 国际地震动态, 2019, (8): 182.
|
|
LI Yan-e, CHEN Xue-zhong. Study on stress change and triggering process before Changning earthquake[J]. Recent Developments in World Seismology, 2019, (8): 182 (in Chinese).
|
[5] |
廖洪月, 朱林, 唐好丛. 电离层TEC中长期微观异常与宜宾地震[J]. 国际地震动态, 2019, (8): 181-182.
|
|
LIAO Hong-yue, ZHU Lin, TANG Hao-cong. Medium- and long-term microscopic anomalies of ionospheric TEC and Yibin earthquake[J]. Recent Developments in World Seismology, 2019, (8): 181-182 (in Chinese).
|
[6] |
刘洁, 赵小茂, 王新, 等. 西安毛西井水位对长宁6.0级地震的同震响应特征分析[J]. 国际地震动态, 2019, (8): 177-178.
|
|
LIU Jie, ZHAO Xiao-mao, WANG Xin, et al. Analysis of the Coseismic Response Characteristics of the Water Level of Maoxi Well in Xi'an to the Changning M6.0 Earthquake[J]. Recent Developments in World Seismology, 2019, (8): 177-178 (in Chinese).
|
[7] |
万永革, 胡晓辉, 刘敬光, 等. 2019四川长宁6.0级地震震源机制中心解及震源区应力场[J]. 国际地震动态, 2019, (8): 174-175.
|
|
WAN Yong-ge, HU Xiao-hui, LIU Jing-guang, et al. The focal mechanism center solution of the 2019 Sichuan Changning M6.0 earthquake and the stress field in the earthquake zone[J]. Recent Developments in World Seismology, 2019, (8): 174-175 (in Chinese).
|
[8] |
易桂喜, 龙锋, 梁明剑, 等. 2019年6月17日四川长宁MS6.0地震序列震源机制解与发震构造分析[J]. 地球物理学报, 2019, 62(9): 3432-3447.
|
|
YI Gui-xi, LONG Feng, LIANG Ming-jian, et al. Focal mechanism solutions and seismogenic structure of the 17 June 2019 MS6.0 Sichuan Changning earthquake sequence[J]. Chinese Journal of Geophysics, 2019, 62(9): 3432-3447 (in Chinese).
|
[9] |
黄辅琼, 田雷. 宜宾长宁6.0级地震的同震及临震流体异常变化及其动力学意义初析[J]. 国际地震动态, 2019, (8): 176-177.
|
|
HUANG Fu-qiong, TIAN Lei. Analysis of co-seismic and imminent fluid anomalies of the MS6.0 earthquake Changning, Yibin, and its dynamic significance[J]. Recent Developments in World Seismology, 2019, (8): 176-177 (in Chinese).
|
[10] |
童崇光. 四川盆地断褶构造形成机制[J]. 天然气工业, 1992, (5): 1-6.
|
|
TONG Chong-guang. Mechanism of forming fault-folded structure in Sichuan Basin[J]. Natural Gas Industry, 1996, (5): 1-6 (in Chinese).
|
[11] |
郭正吾, 邓康龄, 韩永辉. 四川盆地形成与演化[M]. 北京: 地质出版社, 1996.
|
|
GUO Zheng-wu, DENG Kang-lin, HAN Yong-hui. Formation and evolution of Sichuan Basin[M]. Beijing: Geological Publishing House, 1996 (in Chinese).
|
[12] |
覃作鹏, 刘树根, 邓宾, 等. 川东南构造带中新生代多期构造特征及演化[J]. 成都理工大学学报(自然科学版), 2013, 40(6): 703-711.
|
|
QIN Zuo-peng, LIU Shu-gen, DENG Bin, et al. Multiphase structural features and evolution of Southeast Sichuan tectonic belt in China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2013, 40(6): 703-711 (in Chinese).
|
[13] |
常祖峰, 王光明. 2019年6月17日长宁M6.0地震的构造背景[J]. 国际地震动态, 2019, (8): 179-181.
|
|
CHANG Zu-feng, WANG Guang-ming. The tectonic setting of the Changning M6.0 earthquake on June 17, 2019[J]. Recent Developments in World Seismology, 2019, (8): 179-181 (in Chinese).
|
[14] |
何登发, 鲁人齐, 黄涵宇, 等. 长宁页岩气开发区地震的构造地质背景[J]. 石油勘探与开发, 2019, 46(5): 993-1006.
|
|
HE Deng-fa, LU Ren-qi, HUANG Han-yu, et al. Tectonic geological background of the earthquake in Changning shale gas development area[J]. Petroleum Exploration and Development, 2019, 46(5): 993-1006 (in Chinese).
|
[15] |
Massonnet D, Rossi M, Carmona, et al. The displacement field of the Landers earthquake mapped by radar interferometry[J]. Nature, 1993, 364(6433): 138-142.
|
[16] |
Dong Y, Meng G, Hong S. Coseismic and Postseismic Deformation of the 2016 MS6.6 Aketao Earthquake from InSAR Observations and Modelling[J]. Pure and Applied Geophysics, 2019, (B3).
|
[17] |
Chlieh M, Chabalier J B D, Ruegg J C, et al. Crustal deformation and fault slip during the seismic cycle in the North Chile subduction zone, from GPS and InSAR observations[M]. 2004.
|
[18] |
Rocca F. Perspectives of Sentinel-1 for InSAR applications[C]//Geoscience and Remote Sensing Symposium (IGARSS), 2012 IEEE International. IEEE, 2012.
|
[19] |
Fialko Y, Sandwell D, Simons M, et al. Three-dimensional deformation caused by the Bam, Iran, earthquake and the origin of shallow slip deficit[J]. Nature, 2005, 435(7040): 295-299.
|
[20] |
Rosen P A, Gurrola E, Sacco G F, et al. The InSAR scientific computing environment[C]//EUSAR 2012; 9th European Conference on Synthetic Aperture Radar. VDE, 2012.
|
[21] |
Farr T G, Rosen P A, Caro E, et al. The Shuttle Radar Topography Mission[J]. Reviews of Geophysics, 2007, 45(2): RG2004.
|
[22] |
Goldstein R M, Werner C L. Radar interferogram filtering for geophysical applications[J]. Geophysical Research Letters, 1998, 25(21): 4035-4038.
|
[23] |
于勇, 王超, 张红, 等. 基于不规则网络下网络流算法的相位解缠方法[J]. 遥感学报, 2003, 7(6): 472-477.
|
|
YU Yong, WANG Chao, ZHANG Hong, et al. A Phase Unwrapping Method Based on Network Flow Algorithm in Irregular Network[J]. Journal of Remote Sensing, 2003, 7(6): 472-477 (in Chinese).
|
[24] |
李陶. 重复轨道星载SAR差分干涉监测地表形变研究[D]. 湖北: 武汉大学, 2004.
|
|
LI Tao. Study on Surface Deformation Monitoring by Repeat Pass Spaceborne SAR Differential Interferograms[D]. Hubei: Wuhan University, 2004 (in Chinese).
|
[25] |
Li Z, Fielding E J, Cross P, et al. Interferometric synthetic aperture radar atmospheric correction: Medium Resolution Imaging Spectrometer and Advanced Synthetic Aperture Radar integration[J]. Geophysical Research Letters, 2006, 33(6): 272-288.
|
[26] |
Li Z, Fielding E J, Cross P, et al. Interferometric synthetic aperture radar atmospheric correction: GPS topography-dependent turbulence model[J]. Journal of Geophysical Research Solid Earth, 2006, 111(B2).
|
[27] |
Yu C, Penna N T, Li Z. Generation of real-time mode high-resolution water vapor fields from GPS observations[J]. Journal of Geophysical Research: Atmospheres, 2017, 122(3): 2008-2025.
|
[28] |
Wells B D L, Coppersmith K J. New Empirical Relationships among Magnitude, Rupture Length, Rupture Width, Rupture Area, and Surface Displacement[J]. Bulletin of the Seismological Society of America, 1994, 84(4): 974-1002.
|
[29] |
Seth S, Dominic L, Michael W, et al. An Introduction to Seismology, Earthquakes, and Earth Structure[M]//An introduction to seismology, earthquakes, and earth structure. Blackwell Pub. 2003.
|
[30] |
Wang R, Lorenzo-Martín F, Roth F. PSGRN/PSCMP—a new code for calculating co- and post-seismic deformation, geoid and gravity changes based on the viscoelastic-gravitational dislocation theory[J]. Computers & Geosciences, 2006, 32(4): 527-541.
|
[31] |
Okada Y. 1992. Surface deformation due to shear and tensile faults in a half-space[J]. Bulletin of the Seismological Society of America, 82(2): 1018-1040.
|
[32] |
Jonsson S. Fault Slip Distribution of the 1999 MW7.1 Hector Mine, California, Earthquake, Estimated from Satellite Radar and GPS Measurements[J]. Bull.seismol.soc.am, 2002, 92(4): 1377-1389.
|
[33] |
Wang R, Diao F, Hoechner A. SDM-A geodetic inversion code incorporating with layered crust structure and curved fault geometry[C]//Egu General Assembly Conference. 2013.
|