[1] Whittaker A C, Attal M, Cowie P A. Decoding temporal and spatial patterns of fault uplift using transient river long profiles[J]. Geomorphology, 2008, 100: 506-526. [2] 贾营营, 付碧宏, 王岩. 青藏高原东缘龙门山断裂带晚新生代构造地貌生长及水系响应[J]. 第四纪研究, 2010, 30(4): 825-836. [3] 赵国光, 苏刚. 走滑断错地貌的特征及研究方法[J]. 地壳构造与地壳应力文集, 2001, 14: 23-34. [4] 李勇, 周荣军, Densmore A L. 青藏高原东缘龙门山晚新生代走滑挤压作用的沉积响应[J]. 沉积学报, 2006, 24(2): 153-164. [5] 李勇, 周荣军, Densmore A L. 青藏高原东缘龙门山晚新生代走滑-逆冲作用的地貌标志[J]. 第四纪研究, 2006, 26(1): 40-51. [6] 李传友, 张培震, 袁道阳. 西秦岭北缘断裂带黄香沟段晚第四纪水平位移特征及其微地貌响应[J]. 地震地质, 2006, 28(3): 391-404. [7] 史兴民, 杨景春. 河流地貌对构造活动的响应[J]. 水土保持研究, 2003, 10(3): 48-52. [8] 王萍, 卢演俦, 陈杰. 阿尔金主断裂东段第四纪左行走滑的新证据[J]. 地震地质, 2005, 27(1): 55-62. [9] 张珂, 刘开瑜, 杨景春. 海原断裂带的断层走滑型不对称谷地[M]. 北京: 地震出版社, 2001. [10] 贾秋鹏, 贾东, 朱艾斓. 青藏高原东缘龙门山冲断带与四川盆地的现今构造表现: 数字地形和地震活动证据[J]. 地质科学, 2007, 42(1): 31-44. [11] Kirby E, Whipple K X. Distribution of active rock uplift along the eastern margin of the Tibetan Plateau: Inferences from bedrock channel longitudinal profiles[J]. Journal of Geophysical Research, 2003, 108(B4): 1-16. [12] Whittaker A C. Investigating controls on bedrock river incision using natural and laboratory experiments[M]. Edinbergh: University of Edinbergh, 2007. [13] Cowie P A, Attal M, Tucker G E. Investigating the surface process response to fault interaction and linkage using a numerical modelling approach[J]. Basin Research. 2006, 18: 231-266. [14] Harkins N, Kirby E, Heimsath A. Transient fluvial incision in the headwaters of the Yellow River, northeastern Tibet, China[J]. Journal of Geophysical Research, 2007, 112: 1-21. [15] 陈正乐, 张岳桥, 陈宣华. 阿尔金断裂中断晚新生代走滑过程的沉积响应[J]. 中国科学D辑, 2001, 31: 90-96. [16] 张培震, 李传友, 毛凤英. 河流阶地演化与走滑断裂滑动速率[J]. 地震地质, 2008, 30(1): 44-57. [17] 王铮, 丁金宏. 理论地理学概论[M]. 北京: 科学出版社, 1994. [18] Gasparini N M, Whipple K X, Bras R L. Predictions of steady state and transient landscape morphology using sediment-flux-dependent river incision models[J]. Journal of Geophysical Research, 2007, 112: 1-20. [19] Andrews D J, Bucknam R C. Fitting dgradation of shoreline scarps by a nonlinear diffusion model[J]. Journal of Geophysical Research, 1987, 92(B12): 12857-12867. [20] Hanks T C, Andrews D J. Effect of far-field slope on morphologic dating of scarplike landforms[J]. Journal of Geophysical Research, 1989, 94(B1): 565-573. [21] Roering J J, Kirchner J W, Dietrich W E. Evidence for nonlinear, diffusice sediment transport on hillslopes and implications for landscape morphology[J]. Water Resources Research, 1999, 35(3): 853-870. [22] Roering J J, Kirchner J W, Sklar L S. Hillslope evolution by nonlinear creep and landsliding: an experimental study[J]. Geological Society of America, 2001, 29(2): 143-146. [23] Tucker G E, Slingerland R L. Erosional dynamics, flexural isostasy, and long-lived escarpments: A numerical modeling study[J]. Journal of Geophysical Research, 1994, 99(B6): 12229-12243. [24] Tucker G E. Natural experiments in landscape evolution[J]. Earth Surface Processes and Landforms, 2009, 34: 1450-1460. [25] Whipple K X, Tucker G E. Implications of sediment-flux-dependent river incision models for landscape evolution[J]. Journal of Geophysical Research, 2002, 107(B2): 1-20. [26] Tucker G E, Whipple K X. Topographic outcomes predicted by stream erosion models: Sensitivity analysis and intermodel comparison[J]. Journal of Geophysical Research, 2002, 107(B9): 2179-2194. [27] Howard A D. A detachment-limited model of drainage basin evolution[J]. Water Resources Research, 1994, 30(7): 2261-2285. [28] Whipple K X, Tucker G E. Dynamics of the stream-power river incision model: Implications for height limits of mountain ranges, landscape response timescales, and research needs[J]. Journal of Geophysical Research, 1999, 104(B8): 17661-17674. [29] Tucker G E. Drainage basin sensitivity to tectonic and climatic foring: implications of a stochastic model for the role of entrainment and erosion thresholds[J]. Earth Surface Processes and Landforms, 2004, 29: 185-205. [30] Seidl M A, Dietrich W E. The problem of channel erosion into bedrock[J]. Catena Supplement, 1992, 23: 101-124. |