EARTHQUAKE ›› 2024, Vol. 44 ›› Issue (2): 104-119.doi: 10.12196/j.issn.1000-3274.2024.02.007
Previous Articles Next Articles
WANG Ting-ting, BIAN Yin-ju, REN Meng-yi, YANG Qian-li, HOU Xiao-lin
Received:
2023-09-21
Revised:
2023-12-27
Online:
2024-04-30
Published:
2024-04-28
CLC Number:
WANG Ting-ting, BIAN Yin-ju, REN Meng-yi, YANG Qian-li, HOU Xiao-lin. Seismic Event Recognition Software[J]. EARTHQUAKE, 2024, 44(2): 104-119.
[1] 赵永, 刘卫红, 高艳玲. 北京地区地震、 爆破和矿震的记录图识别[J]. 地震地磁观测与研究, 1995, 16(4): 48-54. ZHAO Yong, LIU Wei-hong, GAO Yan-ling. Distinguishing earthquake, explosion and mine earthquake in Beijing area[J]. Seismological and Geomagnetic Observation and Research, 1995, 16(4): 48-54 (in Chinese). [2]Kim W Y, Simpson D W, Richards P G. High-frequency spectra of regional phases from earthquakes and chemical explosions[J]. Bulletin of the Seismological Society of America, 1994, 84(5): 1365-1386. [3] Koper K D, Pechmann J C, Burlacu R, et al. Magnitude-based discrimination of man-made seismic events from naturally occurring earthquakes in Utah, USA[J]. Geophysical Research Letters, 2016, 43(20): 10638-10645. [4] Kim W Y, Simpson D W, Richards P G. Discrimination of earthquakes and explosions in the Eastern United States using regional high-frequency data[J]. Geophysical Research Letters, 1993, 20(14): 1507-1510. [5] Esposito A M, Giudicepietro F, Scarpetta S, et al. Automatic discrimination among landslide, explosion-quake, and microtremor seismic signals at Stromboli Volcano using neural networks[J]. Bulletin of the Seismological Society of America, 2006, 96(4A): 1230-1240. [6] Reynen A, Audet P. Supervised machine learning on a network scale: Application to seismic event classification and detection[J]. Geophysical Journal International, 2017, 210(3): 1394-1409. [7] 任涛, 林梦楠, 陈宏峰, 等. 基于Bagging集成学习算法的地震事件性质识别分类[J]. 地球物理学报, 2019, 62(1): 383-392. REN Tao, LIN Meng-nan, CHEN Hong-feng, et al. Seismic event classification based on bagging ensemble learning algorithm[J]. Chinese Journal of Geophysics, 2019, 62(1): 383-392 (in Chinese). [8] Tang L L, Zhang M, Wen L X. Support vector machine classification of seismic events in the Tianshan orogenic belt[J]. Journal of Geophysical Research: Solid Earth, 2020, 125: e2019JB018132. [9] 王婷婷, 边银菊, 杨千里, 等. 不同地区人工爆炸与天然地震记录特征及识别研究[J]. 地震学报, 2021, 43(4): 427-440. WANG Ting-ting, BIAN Yin-ju, YANG Qian-li, et al. Research on seismic characteristics and identification of artificial explosion in different areas and natural earthquake[J]. Acta Seismologica Sinica, 2021, 43(4): 427-440 (in Chinese). [10] 杨千里, 王婷婷, 边银菊. 基于广义S变换的地震与爆炸识别[J]. 地震学报, 2020, 42(5): 613-628. YANG Qian-li, WANG Ting-ting, BIAN Yin-ju. Recognition of earthquakes and explosions based on generalized S transform[J]. Acta Seismologica Sinica, 2020, 42(5): 613-628 (in Chinese). [11] Zhang Y X, Wang T T, Bian Y J, et al. Features of different types of seismic events in China’s Capital Region[J]. Earthquake Science, 2021, 34(6): 489-506. [12] 王婷婷, 边银菊, 张博. 地震和爆破的综合识别方法研究[J]. 地球物理学进展, 2013, 28(5): 2433-2443. WANG Ting-ting, BIAN Yin-ju, ZHANG Bo. The comprehensive identification methods between earthquakes and explosions[J]. Progress in Geophysics, 2013, 28(5): 2433-2443 (in Chinese). [13] 隗永刚, 杨千里, 王婷婷, 等. 基于深度学习残差网络模型的地震和爆破识别[J]. 地震学报, 2019, 41(5): 646-657. WEI Yong-gang, YANG Qian-li, WANG Ting-ting, et al. Earthquake and explosion identification based on deep learning residual network model[J]. Acta Seismologica Sinica, 2019, 41(5): 646-657 (in Chinese). [14]Wang T, Bian Y, Zhang Y, et al. Classification of earthquakes, explosions and mining-induced earthquakes based on XGBoost algorithm[J]. Computers & Geosciences, 2023, 170: 105242. [15] Wang T, Bian Y, Zhang Y, et al. Using artificial intelligence methods to classify different seismic events[J]. Seismological Research Letters, 2023, 94(1): 1-16. [16] 廖诗荣, 张红才, 范莉苹, 等. 实时智能地震处理系统研发及其在2021年云南漾濞MS6.4地震中的应用[J]. 地球物理学报, 2021, 64(10): 3632-3645. LIAO Shi-rong, ZHANG Hong-cai, FAN Li-ping, et al. Development of a real-time intelligent seismic processing system and its application in the 2021 Yunnan Yangbi MS6.4 earthquake[J]. Chinese Journal of Geophysics, 2021, 64(10): 3632-3645 (in Chinese). [17] Renouard A, Maggi A, Grunberg M, et al. Toward false event detection and quarry blast versus earthquake discrimination in an operational setting using semiautomated machine learning[J]. Seismological Research Letters, 2021, 92(6): 3725-3742. [18] 唐明铭. 搭建基于Qt环境的初至波拾取平台[D]. 青岛: 中国石油大学(华东), 2013. TANG Ming-ming. Building Qt based platform for determining first arrival times[D]. Qingdao: China University of Petroleum (East China), 2013 (in Chinese). [19] 缪雨润. 基于Qt的图形用户界面的研究与实现[D]. 南京: 东南大学, 2015. MIAO Yu-run. Research and implementation of graphical user interface based of Qt[D]. Nanjing: Southeast University, 2015 (in Chinese). [20] Wang T T, Bian Y J, Yang Q L, et al. Correction of P/S amplitude ratios for low-magnitude seismic events based on Bayesian kriging method[J]. Bulletin of the Seismological Society of America, 2021, 111(5): 2799-2813. [21] Brune J N. Tectonic stress and the spectra of seismic shear waves from earthquakes[J]. Journal of Geophysical Research, 1970, 75(26): 4997-5009. [22] Jimeénez A, Garciía J M, Romacho M D. Simultaneous inversion of source parameters and attenuation factor using genetic algorithms[J]. Bulletin of the Seismological Society of America, 2005, 95(4): 1401-1411. [23]Douglas A. Forensic seismology and nuclear test bans[M]. Cambridge: Cambridge University Press, 2013. [24] Baumgardt D R, Ziegler K A. Spectral evidence for source multiplicity in explosions: Application to regional discrimination of earthquakes and explosions[J]. Bulletin of the Seismological Society of America, 1988, 78(5): 1773-1795. [25] Muller K, Mika S, Ratsch G, et al. An introduction to kernel-based learning algorithms[J]. IEEE Transactions on Neural Networks, 2001, 12(2): 181-201. [26] 林鑫, 王向腾, 赵连锋, 等. 核试验监测的地震学研究综述[J]. 地球物理学报, 2019, 62(11): 4047-4066. LIN Xin, WANG Xiang-teng, ZHAO Lian-feng, et al. A review of seismological research on nuclear test monitoring[J]. Chinese Journal of Geophysics, 2019, 62(11): 4047-4066 (in Chinese). [27] Murphy J R. Types of seismic events and their source descriptions[A]//Husebye E S, Dainty A M. Monitoring a Comprehensive Test Ban Treaty[M]. Dordrecht: Kluwer Academic Publishers, 1996. [28] Bowers D, Marshall P D, Douglas A. The level of deterrence provided by data from the SPITS seismometer array to possible violations of the comprehensive test ban in the Novaya Zemlya region[J]. Geophysical Journal International, 2001, 146(2): 425-438. [29] Stevens J L, Murphy J R. Yield estimation from surface-wave amplitudes[J]. Pure and Applied Geophysics, 2001, 158(11): 2227-2251. [30] Wilks S S. Mathematical statistics[M]. New York: Wiley Press, 1962. [31] 边银菊. Fisher方法在震级比mb/MS判据识别爆炸中的应用研究[J]. 地震学报, 2005, 27(4): 414-422. BIAN Yin-ju. Application of Fisher method to discriminating earthquakes and explosions using criterion mb/MS[J]. Acta Seismologica Sinica, 2005, 27(4): 414-422 (in Chinese). [32] Cortes C, Vapnik V. Support-vector networks[J]. Machine Learning, 1995, 20(3): 273-297. [33] Kortström J, Uski M, Tiira T. Automatic classification of seismic events within a regional seismograph network[J]. Computers & Geosciences, 2016, 87: 22-30. [34] Chen T Q, Guestrin C. XGBoost: A scalable tree boosting system[C]. San Francisco: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining, 2016: 785-794. [35] Nguyen H, Bui X N, Bui H B, et al. Developing an XGBoost model to predict blast-induced peak particle velocity in an open-pit mine: A case study[J]. Acta Geophysica, 2019, 67(2): 477-490. [36] Hochreiter S, Schmidhuber J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780. [37] Wöellmer M, Kaiser M, Eyben F, et al. LSTM-modeling of continuous emotions in an audiovisual affect recognition framework[J]. Image and Vision Computing, 2013, 31(2): 153-163. [38] 周俊, 尹悦, 夏斌. 基于LSTM神经网络的声发射信号识别研究[J]. 计算机科学, 2021, 48(11A): 319-326. ZHOU Jun, YIN Yue, XIA Bin. Acoustic emission signal recognition based on long short time memory neural network[J]. Computer Science, 2021, 48(11A): 319-326 (in Chinese). [39] Jiang L, Li C. Scaling up the accuracy of decision-tree classifiers: A naive-bayes combination[J]. Journal of Computers, 2011, 6(7): 1325-1331. [40] 董卫华, 王圣凯, 王雪元, 等. 地图线状要素眼动识别的朴素贝叶斯方法[J]. 测绘学报, 2021, 50(6): 749-756. DONG Wei-hua, WANG Sheng-kai, WANG Xue-yuan, et al. A naive Bayesian method for eye movement recognition of map linear elements[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(6): 749-756 (in Chinese). |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||