[1] DeMets C, Gordon R G, Argus D F. Geologically current plate motions[J]. Geophysical Journal International, 2010, 181(1): 1-80. [2] Kido M, Osada Y, Fujimoto H, et al. Trench-normal variation in observed seafloor displacements associated with the 2011 Tohoku-Oki earthquake[J]. Geophysical Research Letters, 2011, 38(24): L24303. [3] Hayes G P. Rapid source characterization of the 2011 MW9.0 off the Pacific coast of Tohoku earthquake[J]. Earth, Planets and Space, 2011, 63(7): 529-534. [4] 邵志刚, 武艳强, 江在森, 等.基于GPS观测分析日本9.0级地震同震位错与近场形变特征[J]. 地球物理学报, 2011, 54(9): 2243-2249. SHAO Zhi-gang, WU Yan-qiang, JIANG Zai-seng, et al. The analysis of coseismic slip and near-field deformation about Japanese 9.0 earthquake based on the GPS observation[J]. Chinese Journal of Geophysics, 2011, 54(9): 2243-2249 (in Chinese). [5] 王阅兵, 金红林, 付广裕, 等. 利用Yabuki & Matsu’ura反演方法计算2011年日本东北地区太平洋海域MW9.0级地震同震滑动分布[J]. 地球物理学报, 2012, 55(8): 2551-2560. WANG Yue-bing, JIN Hong-lin, FU Guang-yu, et al. Estimation of co-seismic slip distribution of the 2011 Tohoku-Oki MW9.0 earthquake using Yabuki & Matsu’ura’s inverse method[J]. Chinese Journal of Geophysics, 2012, 55(8): 2551-2560 (in Chinese). [6] Wei S, Graves R, Helmberger D, et al. Sources of shaking and flooding during the Tohoku-Oki earthquake: A mixture of rupture styles[J]. Earth and Planetary Science Letters, 2012, 333-334: 91-100. [7] Freed A M, Hashima A, Becker T W, et al. Resolving depth-dependent subduction zone viscosity and afterslip from postseismic displacements following the 2011 Tohoku-Oki, Japan earthquake[J]. Earth and Planetary Science Letters, 2017, 459: 279-290. [8] 陈飞, 刘泰, 付广裕, 等. 震后GPS观测数据揭示的日本MW9.0地震周边地区地幔黏滞性结构垂向变化[J]. 地球物理学报, 2020, 63(6): 2210-2220. CHEN Fei, LIU Tai, FU Guang-yu, et al. Variation of the mantle viscosity around the Tohoku-Oki MW9.0 earthquake revealed by post-seismic GPS data[J]. Chinese Journal of Geophysics, 2020, 63(6): 2210-2220 (in Chinese). [9] 刘泰, 付广裕, 周新, 等. 2011年日本MW9.0地震震后形变机制与震源区总体构造特征[J]. 地球物理学报, 2017, 60(9): 3406-3417. LIU Tai, FU Guang-yu, ZHOU Xin, et al. Mechanism of post-seismic deformations following the 2011 Tohoku-Oki MW9.0 earthquake and general structure of lithosphere around the source[J]. Chinese Journal of Geophysics, 2017, 60(9): 3406-3417 (in Chinese). [10] 刘泰, 付广裕, 苏小宁. 利用粘弹性球体位错理论研究2011年日本MW9.0地震引起的震后位移时空变化[J]. 地震, 2017, 37(3): 1-11. LIU Tai, FU Guang-yu, SU Xiao-ning. Post-seismic displacements induced by the 2011 Tohoku-Oki MW9.0 earthquake based on visco-elastic spherical dislocation theory[J]. Earthquake, 2017, 37(3): 1-11 (in Chinese). [11] 梁明, 王武星, 张晶. 联合GPS和GRACE观测研究日本MW9.0地震震后变形机制[J]. 地球物理学报, 2018, 61(7): 2691-2704. LIANG Ming, WANG Wu-xing, ZHANG Jing. Post-seismic deformation mechanism of the MW9.0 Tohoku-Oki earthquake detected by GPS and GRACE observations[J]. Chinese Journal of Geophysics, 2018, 61(7): 2691-2704 (in Chinese). [12] 刁法启, 熊熊, 倪四道, 等. 利用GPS位移反演日本MW9.0仙台地震及MW7.9强余震静态位错模型[J]. 科学通报, 2011, 56(24): 1999-2005. DIAO Fa-qi, XIONG Xiong, NI Si-dao, et al. Slip model for the 2011 MW9.0 Sendai (Japan) earthquake and its MW7.9 aftershock derived from GPS data[J]. Chinese Science Bulletin. 2011, 56(24): 1999-2005 (in Chinese). [13] Diao F Q, Xiong X, Wang R J, et al. Overlapping post-seismic deformation processes: Afterslip and viscoelastic relaxation following the 2011 MW9.0 Tohoku (Japan) earthquake[J]. Geophysical Journal International, 2014, 196(1): 218-229. [14] Iinuma T, Hino R, Uchida N, et al. Seafloor observations indicate spatial separation of coseismic and postseismic slips in the 2011 Tohoku earthquake[J]. Nature Communications, 2016, 7: 13506. [15] Hoechner A, Sobolev S V, Einarsson I, et al. Investigation on afterslip and steady state and transient rheology based on postseismic deformation and geoid change caused by the Sumatra 2004 earthquake[J]. Geochemistry, Geophysics, Geosystems, 2011, 12(7): Q07010. [16] Sobrero F S, Bevis M, Gómez D D, et al. Logarithmic and exponential transients in GNSS trajectory models as indicators of dominant processes in postseismic deformation[J]. Journal of Geodesy, 2020, 94(9): 84. [17] Yamagiwa S, Miyazaki S, Hirahara K, et al. Afterslip and viscoelastic relaxation following the 2011 Tohoku-Oki earthquake (MW9.0) inferred from inland GPS and seafloor GPS/Acoustic data[J]. Geophysical Research Letters, 2015, 42(1): 66-73. [18] Tomita F, Iinuma T, Ohta Y, et al. Improvement on spatial resolution of a coseismic slip distribution using postseismic geodetic data through a viscoelastic inversion[J]. Earth, Planets and Space, 2020, 72(1): 84. [19] Tanaka T, Okuno J, Okubo S. A new method for the computation of global viscoelastic post-seismic deformation in a realistic earth model (Ⅰ)—Vertical displacement and gravity variation[J]. Geophysical Journal International, 2006, 164(2): 273-289. [20] Tanaka T, Okuno J, Okubo S. A new method for the computation of global viscoelastic post-seismic deformation in a realistic earth model (Ⅱ)—Horizontal displacement[J]. Geophysical Journal International, 2007, 170(3): 1031-1052. [21] Okada Y. Surface deformation due to shear and tensile faults in a half-space[J]. Bulletin of the Seismological Society of America, 1985, 75(4): 1135-1154. [22] Ozawa S, Nishimura T, Suito H, et al. Coseismic and postseismic slip of the 2011 magnitude-9 Tohoku-Oki earthquake[J]. Nature, 2011, 475(7356): 373-376. [23] Moore J D P, Yu H, Tang C H, et al. Imaging the distribution of transient viscosity after the 2016 MW7.1 Kumamoto earthquake[J]. Science, 2017, 356(6334): 163-167. [24] Sun T, Wang K, Iinuma T, et al. Prevalence of viscoelastic relaxation after the 2011 Tohoku-oki earthquake[J]. Nature, 2014, 514(7520): 84-87. [25] Sato M, Ishikawa T, Ujihara N, et al. Displacement above the hypocenter of the 2011 Tohoku-Oki earthquake[J]. Science, 2011, 332(6036): 1395-1395. [26] Hu Y, Bürgmann R, Uchida N, et al. Stress-driven relaxation of heterogeneous upper mantle and time-dependent afterslip following the 2011 Tohoku earthquake[J]. Journal of Geophysical Research: Solid Earth, 2016, 121(1): 385-411. [27] Pollitz F F, Bürgmann R, Banerjee P. Post-seismic relaxation following the great 2004 Sumatra-Andaman earthquake on a compressible self-gravitating Earth[J]. Geophysical Journal International, 2006, 167(1): 397-420. [28] Pollitz F F, Bürgmann R, Banerjee P. Geodetic slip model of the 2011 MW9.0 Tohoku earthquake[J]. Geophysical Research Letters, 2011, 38(7): L00G08. [29] Wang K, Hu Y, He J. Deformation cycles of subduction earthquakes in a viscoelastic Earth[J]. Nature, 2012, 484(7394): 327-332. [30] Sun W K, Okubo S, Fu G Y, et al. General formulations of global co-seismic deformations caused by an arbitrary dislocation in a spherically symmetric earth model-applicable to deformed earth surface and space-fixed point[J]. Geophysical Journal International, 2009, 177(3): 817-833. [31] Dziewonski A M, Anderson D L. Preliminary reference earth model[J]. Physics of the Earth and Planetary Interiors, 1981, 25(4): 297-356. [32] Golub G H, Heath M, Wahba G. Generalized cross-validation as a method for choosing a good ridge parameter[J]. Technometrics, 1979, 21(2): 215-223. [33] Yabuki T, Matsu’ura M. Geodetic data inversion using a Bayesian information criterion for spatial distribution of fault slip[J]. Geophysical Journal International, 1992, 109(2): 363-375. [34] Fu G Y, Sun W K. Effects of spatial distribution of fault slip on calculating co-seismic displacement: Case studies of the Chi-Chi earthquake (MW7.6) and the Kunlun earthquake (MW7.8)[J]. Geophysical Research Letters, 2004, 31(21): L21601. [35] 付广裕, 刘泰. 基于粘弹性球体地球模型的震后位移与重力变化计算软件[J]. 大地测量与地球动力学, 2017, 37(7): 661-667. FU Guang-yu, LIU Tai. A user-friendly code for calculating post-seismic displacements and gravity changes on a symmetric viscoelastic spherical earth[J]. Journal of Geodesy and Geodynamics, 2017, 37(7): 661-667 (in Chinese). [36] Tsang L L H, Hill E M, Barbot S, et al. Afterslip following the 2007 MW8.4 Bengkulu earthquake in Sumatra loaded the 2010 MW7.8 Mentawai tsunami earthquake rupture zone[J]. Journal of Geophysical Research: Solid Earth, 2016, 121(12): 9034-9049. [37] Zhao Q, Fu G Y, Wu W W, et al. Spatial-temporal evolution and corresponding mechanism of the far-field post-seismic displacements following the 2011 MW9.0 Tohoku earthquake[J]. Geophysical Journal International, 2018, 214(3): 1774-1782. [38] Zhou X, Cambiotti G, Sun W, et al. The coseismic slip distribution of a shallow subduction fault constrained by prior information: the example of 2011 Tohoku (MW9.0) megathrust earthquake[J]. Geophysical Journal International, 2014, 199(2): 981-995. |