EARTHQUAKE ›› 2024, Vol. 44 ›› Issue (2): 63-85.doi: 10.12196/j.issn.1000-3274.2024.02.005
Previous Articles Next Articles
YANG Yan-ming1, SU Shu-juan2, WANG Lei1
Received:
2023-07-10
Revised:
2023-11-11
Online:
2024-04-30
Published:
2024-04-28
CLC Number:
YANG Yan-ming, SU Shu-juan, WANG Lei. Determination of Rupture Direction and Seismogenic Structure of the 2020 Heerlinger ML4.5 Earthquake in Hohhot, Inner Mongolia[J]. EARTHQUAKE, 2024, 44(2): 63-85.
[1] 毕珉烽. 岱海断陷带活动性与地震危险性研究[D]. 北京: 中国地质大学(北京), 2012. BI Min-feng. The study of fault activity and seismic hazard in Daihai fault zone[D]. Beijing: China University of Geosciences (Beijing), 2012 (in Chinese). [2] 高立新, 戴勇, 贾宁. 鄂尔多斯块体周缘地震活动特征分析[J]. 防灾科技学院学报, 2012, 14(4): 70-79. GAO Li-xin, DAI Yong, JIA Ning. Study on seismic activity characteristics in Ordos Block and seismic risk analysis of northern edge[J]. Journal of Institute of Disaster Prevention, 2012, 14(4): 70-79 (in Chinese). [3] 李丽, 孟令媛, 吴昊昱, 等. 晋冀蒙交界地区中强地震前地震活动图像异常特征[J]. 地震研究, 2022, 45(4): 581-591. LI Li, MENG Ling-yuan, WU Hao-yu, et al. Characteristics of seismic activity before the medium-strong earthquakes in the bordering region of Shanxi, Hebei and Inner Mongolia[J]. Journal of Seismological Research, 2022, 45(4): 581-591 (in Chinese). [4] 徐锡伟, 邓起东, 董瑞树, 等. 山西地堑系强震的活动规律和危险区段的研究[J]. 地震地质, 1992, 14(4): 305-316. XU Xi-wei, DENG Qi-dong, DONG Rui-shu, et al. Study on strong earthquake activity and risk areas in the Shanxi Graben System[J]. Seismology and Geology, 1992, 14(4): 305-316 (in Chinese). [5] 徐锡伟, 吴卫民, 张先康, 等. 首都圈地区地壳最新构造变动与地震[M]. 北京: 科学出版社, 2002. XU Xi-wei, WU Wei-min, ZHANG Xian-kang, et al. New crustal structure motion and earthquake in capital area[M]. Beijing: Science Press, 2002 (in Chinese). [6] 张肇诚, 罗兰格, 李海华, 等. 中国震例(1976—1980)[M]. 北京: 地震出版社, 1990. ZHANG Zhao-cheng, LUO Lan-ge, LI Hai-hua, et al. Earthquake cases in China (1976—1980)[M]. Beijing: Seismological Press, 1990 (in Chinese). [7]Scholz C H. The mechanics of earthquake and faulting[M]. Cambridge: Cambridge University Press, 1990. [8] Ambraseys N N. Some characteristic features of the Anatolian fault zone[J]. Tectonophysics, 1970, 9(2-3): 143-165. [9] 闻学泽, 马胜利. 唐山大地震对相邻断裂段地震复发的影响[J]. 自然科学进展, 2006, 16(10): 1346-1350. WEN Xue-ze, MA Sheng-li. Effect of strong Tangshan earthquake on seismic recurrence in adjacent faults[J]. Progress in Natural Sciences, 2006, 16(10): 1346-1350 (in Chinese). [10] Fang L H, Wu J P, Wang W L, et al. Relocation of the mainshock and aftershock sequences of MS7.0 Sichuan Lushan earthquake[J]. Chinese Science Bulletin, 2013, 58(28-29): 3451-3459. [11] Han L B, Zeng X F, Jiang C S, et al. Focal mechanisms of the 2013 MW6.6 Lushan, China earthquake and high-resolution aftershock relocations[J]. Seismological Research Letters, 2014, 85(1): 8-14. [12] 何骁慧, 张冬丽, 张培震. 中强地震破裂方向性测定方法及其在发震断层判定中的应用[J]. 地球物理学进展, 2019, 34(6): 2158-2168. HE Xiao-hui, ZHANG Dong-li, ZHANG Pei-zhen. Rupture directivity of moderate earthquakes and its application to the determination of seismogenic faults[J]. Progress in Geophysics, 2019, 34(6): 2158-2168 (in Chinese). [13] 何骁慧, 倪四道, 刘杰. 2014年8月3日云南鲁甸M6.5地震破裂方向性研究[J]. 中国科学: 地球科学, 2015, 45(3): 253-263. HE Xiao-hui, NI Si-dao, LIU Jie. Rupture directivity of the August 3rd, 2014 Ludian earthquake (Yunan, China)[J]. Science China: Earth Sciences, 2015, 45(3): 253-263 (in Chinese). [14] 王未来, 吴建平, 房立华, 等. 2014年云南鲁甸MS6.5地震序列的双差定位[J]. 地球物理学报, 2014, 57(9): 3042-3051. WANG Wei-lai, WU Jian-ping, FANG Li-hua, et al. Double difference location of the Ludian MS6.5 earthquake sequences in Yunnan Province in 2014[J]. Chinese Journal of Geophysics, 2014, 57(9): 3042-3051 (in Chinese). [15] 郑秀芬, 欧阳飚, 张东宁, 等. “国家数字测震台网数据备份中心”技术系统建设及其对汶川大地震研究的数据支撑[J]. 地球物理学报, 2009, 52(5): 1412-1417. ZHENG Xiu-fen, OUYANG Biao, ZHANG Dong-ning, et al. Technical system construction of data backup centre for China seismograph network and the data support to researches on the Wenchuan earthquake[J]. Chinese Journal of Geophysics, 2009, 52(5): 1412-1417 (in Chinese). [16] Zhao L S, Helmberger D V. Source estimation from broadband regional seismograms[J]. Bulletin of the Seismological Society of America, 1994, 84(1): 91-104. [17] Zhu L P, Helmberger D V. Advancement in source estimation techniques using broadband regional seismograms[J]. Bulletin of the Seismological Society of America, 1996, 86(5): 1634-1641. [18] Zhu L P, Ben-Zion Y. Parameterization of general seismic potency and moment tensors for source inversion of seismic waveform data[J]. Geophysical Journal International, 2013, 194(2): 839-843. [19] Waldhauser F, Ellsworth W L. A double-difference earthquake location algorithm: method and application to the northern hayward fault, California[J]. Bulletin of the Seismological Society of America, 2000, 90(6): 1353-1368. [20] Zahradnik J, Gallovic F, Sokos E, et al. Quick fault-plane identification by a geometrical method: Application to the MW6.2 Leonidio earthquake, 6 January 2008, Greece[J]. Seismological Research Letters, 2008, 79(5): 653-662. [21] 国家地震局震害防御司. 中国历史强震目录(公元前23世纪—公元1911年)[M]. 北京: 地震出版社, 1995. Division of Earthquake Damage Prevention of the State Seismological Bureau. Catalogue of strong earthquakes in Chinese history (Twenty-Third Century BC—1911)[M]. Beijing: Seismological Press, 1995 (in Chinese). [22] Deng Q D, Zhang P Z, Ran Y K, et al. Basic characteristics of active tectonics of China[J]. Science in China (Series D: Earth Sciences), 2003, 46(4): 356-372. [23] 国家地震局“鄂尔多斯周缘活动断裂系”课题组. 鄂尔多斯周缘活动断裂系[M]. 北京: 地震出版社, 1988. The Research Group on “Active Fault System around Ordos Massif”, State Seismological Bureau. Active fault system around Ordos massif[M]. Beijing: Seismological Press, 1988 (in Chinese). [24] 徐杰, 蒋溥, 宋方敏, 等. 和林格尔地震地震地质特征的初步分析[J]. 地质科学, 1978(2): 174-182. XU Jie, JIANG Pu, SONG Fang-min, et al. A preliminary study of seismo-geological characteristics in Horinger region[J]. Scientia Geologica Sinica, 1978(2): 174-182 (in Chinese). [25] 郭菲, 任俊杰, 郭慧, 等. 基于历史航卫片的城市“隐形”活动断层精确定位——以大同盆地水峪断裂为例[J]. 地质力学学报, 2021, 27(2): 254-266. GUO Fei, REN Jun-jie, GUO Hui, et al. Using historical aerial images to accurately locate the urban “invisible” active faults: A case study of the Shuiyu fault of the Datong Basin in Shanxi Province[J]. Journal of Geomechanics, 2021, 27(2): 254-266 (in Chinese). [26] 张培震. 天山及其前陆盆地的晚新生代构造变形[J]. 科学通报, 2003, 48(24): 2499-2500. ZHANG Pei-zhen. Late Cenozoic tectonic deformation of the Tianshan and its fore-land basins[J]. Chinese Science Bulletin, 2003, 48(24): 2499-2500 (in Chinese). [27] 张培震, 邓起东, 张竹琪, 等. 中国大陆的活动断裂、 地震灾害及其动力过程[J]. 中国科学: 地球科学, 2013, 43(10): 1607-1620. ZHANG Pei-Zhen, DENG Qi-dong, ZHANG Zhu-qi, et al. Active faults, earthquake hazards and associated geodynamic processes in continental China[J]. Scientia Sinica Terrae, 2013, 43(10): 1607-1620 (in Chinese). [28] 潘博. 河套断陷带北缘主要活动断裂带地震危险性研究[D]. 北京: 中国地质大学(北京), 2012. PAN Bo. Research on seismic hazard evaluation of active faults on the north boundary of the Hetao fault-depression zone[D]. Beijing: China University of Geosciences (Beijing), 2012 (in Chinese). [29] 高白水. 内蒙古岱海盆地现代沉积特征及控制因素[D]. 北京: 中国石油大学, 2016. GAO Bai-shui. Sedimentary characteristics and controlling factors of Daihai Basin, Inner Mongolia[D]. Beijing: China University of Petroleum, 2016 (in Chinese). [30] 姜大伟, 何仲太, 刘睿, 等. 岱海盆地南缘地貌陡坎的成因分析[J]. 第四纪研究, 2013, 33(3): 445-460. JIANG Da-wei, HE Zhong-tai, LIU Rui, et al. A study of the surficial scarps in the south rim of Daihai Basin[J]. Quaternary Sciences, 2013, 33(3): 445-460 (in Chinese). [31] Zhao B, Zhang C, Wang D, et al. Contemporary kinematics of the Ordos block, North China and its adjacent rift systems constrained by dense GPS observations[J]. Journal of Asian Earth Sciences, 2017, 135: 257-267. [32] Zhang Y, Ma Y, Yang N, et al. Cenozoic extensional stress evolution in North China[J]. Journal of Geodynamics, 2003, 36(5): 591-613. [33] Middleton T A, Elliott J R, Rhodes E J, et al. Extension rates across the northern Shanxi Grabens, China, from Quaternary geology, seismicity and geodesy[J]. Geophysical Journal International, 2017, 209(2): 535-558. [34] 杨彦明, 黄世源, 戴勇, 等. 2020年新疆于田MS6.4地震断层面快速测定及发震构造研究[J]. 地震, 2021, 41(2): 29-46. YANG Yan-ming, HUANG Shi-yuan, DAI Yong, et al. Quick fault-plane identification and seismogenic structure of the 2020 Yutian MS6.4 earthquake, Xinjiang[J]. Earthquake, 2021, 41(2): 29-46 (in Chinese). [35] Laske G, Masters G, Reif C. CRUST2.0: A new global crustal model at 2×2 degrees[EB/OL]. (2023-06-01)[2023-07-10]. https:∥igppweb.ucsd.edu/~gabi/crust2.html, 2001. [36] 吴开统, 焦远碧. 地震序列概论[M]. 北京: 北京大学出版社, 1990. WU Kai-tong, JIAO Yuan-bi. Introduction to earthquake sequences[M]. Beijing: Peking University Press, 1990 (in Chinese). [37] Wells D L, Coppersmith K J. New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement[J]. Bulletin of the Seismological Society of America, 1994, 84(4): 974-1002. [38] Efron B, Tibshirani R. Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy[J]. Statistical Science, 1986, 1(1): 54-77. [39] Sheng M H, Chu R S, Wang Y, et al. Inversion of source mechanisms for single-force events using broadband waveforms[J]. Seismological Research Letters, 2020, 91(3): 1820-1830. [40] 杨彦明, 胡博, 戴勇, 等. 2020-01-23四川石渠MS4.3地震震源机制及发震构造研究[J]. 大地测量与地球动力学, 2021, 41(2): 167-172+211. YANG Yan-ming, HU Bo, DAI Yong, et al. Research on focal mechanism and seismogenic structure of 2020-01-23 Shiqu MS4.3 earthquake in Sichuan Province[J]. Journal of Geodesy and Geodynamics, 2021, 41(2): 167-172+211 (in Chinese). [41] 张晖, 谭毅培, 马婷, 等. 2020年和林格尔ML4.5地震微震匹配定位及发震构造探讨[J]. 中国地震, 2021, 37(2): 430-441. ZHANG Hui, TAN Yi-Pei, MA Ting, et al. Microseismic matching location of the 2020 Horiger ML4.5 earthquake sequence and the seismogenic structure analysis[J]. Earthquake Research in China, 2021, 37(2): 430-441 (in Chinese). [42] 郝美仙, 张珂, 徐岩, 等. 内蒙古和林格尔M4.0地震的震源机制与震源深度[J]. 华北地震科学, 2021, 39(1): 84-88. HAO Mei-xian, ZHANG Ke, XU Yan, et al. Focal mechanism and focal depth of Helinger M4.0 earthquake in Inner Mongolia[J]. North China Earthquake Sciences, 2021, 39(1): 84-88 (in Chinese). [43] 万永革. 同一地震多个震源机制中心解的确定[J]. 地球物理学报, 2019, 62(12): 4718-4728. WAN Yong-ge. Determination of center of several focal mechanisms of the same earthquake[J]. Chinese Journal of Geophysics, 2019, 62(12): 4718-4728 (in Chinese). [44] 俞春泉, 陶开, 崔效锋, 等. 用格点尝试法求解P波初动震源机制解及解的质量评价[J]. 地球物理学报, 2009, 52(5): 1402-1411. YU Chun-quan, TAO Kai, CUI Xiao-feng, et al. P-wave first-motion focal mechanism solutions and their quality evaluation[J]. Chinese Journal of Geophysics. 2009, 52(5): 1402-1411 (in Chinese). [45] Shearer P M. Improving local earthquake locations using the L1 norm and waveform cross correlation: Application to the Whittier Narrows, California, aftershock sequence[J]. Journal of Geophysical Research: Solid Earth, 1997, 102(B4): 8269-8283. [46] 周仕勇, 许忠淮, 韩京, 等. 主地震定位法分析以及1997年新疆伽师强震群高精度定位[J]. 地震学报, 1999, 21(3): 258-265. ZHOU Shi-yong, XU Zhong-huai, HAN Jing, et al. Analysis on the master event method and precise location of the 1997 Jiashi strong earthquake swarm of Western China[J]. Acta Seismologica Sinica, 1999, 21(3): 258-265 (in Chinese). [47] 房立华, 吴建平, 王未来, 等. 四川芦山MS7.0级地震及其余震序列重定位[J]. 科学通报, 2013, 58(20): 1901-1909. FANG Li-hua, WU Jian-ping, WANG Wei-lai, et al. Relocation of mainshock and aftershock sequences of MS7.0 Sichuan Lushan earthquake[J]. Chinese Science Bulletin, 2013, 58(20): 1901-1909 (in Chinese). [48] Dodge D A, Beroza G C, Ellsworth W L. Detailed observations of California foreshock sequences: Implications for the earthquake initiation process[J]. Journal of Geophysical Research: Solid Earth, 1996, 101(B10): 22371-22392. [49] Langston C A. Depth of faulting during the 1968 Meckering, Australia, earthquake sequence determined from waveform analysis of local seismograms[J]. Journal of Geophysical Research: Solid Earth, 1987, 92(B11): 11561-11574. [50] 张先, 贺为民, 沈京秀, 等. 内蒙古河套断陷带及其邻区地壳磁性构造特征[J]. 西北地震学报, 1995, 17(1): 31-35. ZHANG Xian, HE Wei-min, SHEN Jing-xiu, et al. Crustal magnetic structure characters in Hetao Rift Zone and its vicinity, Inner Mongolia[J]. Northwestern Seismological Journal, 1995, 17(1): 31-35 (in Chinese). [51] Ye G F, Wang G S, Jin S, et al. Three-dimensional electrical structure and deep dynamics of the Khondalite Belt and adjacent areas in the Western Block of the North China Craton[J]. Precambrian Research, 2020, 350: 105916. [52] 韩晓明, 刘芳, 张帆, 等. 鄂尔多斯块体东北缘的P波速度精细结构[J]. 地震地质, 2018, 40(1): 215-231. HAN Xiao-ming, LIU Fang, ZHANG Fan, et al. 3D P-wave velocity structure at the northeastern margin of Ordos Block[J]. Seismology and Geology, 2018, 40(1): 215-231 (in Chinese). [53] Katayama I, Nicolas A, Schubnel A. Fluid-induced fracturing of initially damaged granite triggered by pore pressure buildup[J]. Geophysical Research Letters, 2018, 45(15): 7488-7495. [54] Zhang G W, Lei J S, Sun D Y. The 2013 and 2017 MS5 seismic swarms in Jilin, NE China: Fluid-triggered earthquakes?[J]. Journal of Geophysical Research: Solid Earth, 2019, 124(12): 13096-13111. [55] Chesley C, Naif S, Key K, et al. Fluid-rich subducting topography generates anomalous forearc porosity[J]. Nature, 2021, 595(7866): 255-260. [56] Wessel P, Smith W H F, Scharroo R, et al. Generic mapping tools: Improved version released[J]. Eos, Transactions American Geophysical Union, 2013, 94(45): 409-410. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||