[1] Tapponnier P, Xu Z Q, Roger F. Oblique stepwise rise and growth of the Tibet Plateau[J]. Science, 2001, 294(5547): 1671-1677. [2] Gan W J, Zhang P Z, Shen Z K, et al. Present-day crustal motion within the Tibetan plateau inferred from GPS measurements[J]. Journal of Geophysical Research, 2007, 112(B8): B08416. [3] Meng G J, Ren J W, Wang M, et al. Crustal deformation in western Sichuan region and implications for 12 May 2008 MS8.0 earthquake[J]. Geochemistry, Geophysics, Geosystems, 2008, 9(11): 1-9. [4] Liang S M, Gan W J, Shen C Z, et al. Three-dimensional velocity field of present-day crustal motion of the Tibetan Plateau derived from GNSS measurements[J]. Journal of Geophysical Research, 2013, 118(10): 5722-5732. [5] Wang M, Shen Z K. Present-day crustal deformation of continental China derived from GNSS and its tectonic implications[J]. Journal of Geophysical Research, 2020, 125(2): e2019JB018774. [6] 江在森, 马宗晋, 张希, 等. GNSS初步结果揭示的中国大陆水平应变场与构造变形[J]. 地球物理学报, 2003, 46(3): 352-358. JIANG Zai-seng, MA Zong-jin, ZHANG Xi, et al. Horizontal strain field and tectonic deformation of China mainland revealed by preliminary GPS result[J]. Chinese Journal of Geophysics, 2003, 46(3): 352-358 (in Chinese). [7] 沈正康, 王敏, 甘卫军, 等. 中国大陆现今构造应变率场及其动力学成因研究[J]. 地学前缘, 2003, 10(S1): 93-100. SHEN Zheng-kang, WANG Min, GAN Wei-jun, et al. Contemporary tectonic strain rate field of Chinese continent and its geodynamic implications[J]. Earth Science Frontiers, 2003, 10(S1): 93-100 (in Chinese). [8] Shen Z K, Lü J N, Wang M, et al. Contemporary crustal deformation around the southeast borderland of the Tibetan Plateau[J]. Journal of Geophysical Research: Solid Earth, 2005, 110: B11409. [9] 朱爽, 杨博. 青藏高原东北缘近期水平形变场分析[J]. 大地测量与地球动力学, 2014, 34(3): 81-85. ZHU Shuang, YANG Bo. Analysis of recent horizontal deformation in the northeastern margin of the Qinghai-Tibetan Plateau[J]. Journal of Geodesy and Geodynamics, 2014, 34(3): 81-85 (in Chinese). [10] 瞿伟, 高源, 陈海禄, 等. 利用GPS高精度监测数据开展青藏高原现今地壳运动与形变特征研究进展[J]. 地球科学与环境学报, 2021, 43(1): 182-204. QU Wei, GAO Yuan, CHEN Hai-lu, et al. Review on Characteristics of present crustal tectonic movement and deformation in Qinghai-Tibet Plateau, China using GPS high precision monitoring data[J]. Journal of Earth Sciences and Environment, 2021, 43(1): 182-204 (in Chinese). [11] 林向东, 徐平, 葛洪魁, 等. 小江断裂中段及其邻近地区应力场时间变化分析[J]. 地震学报, 2011, 33(6): 755-762. LIN Xiang-dong, XU Ping, GE Hong-kui, et al. Possible crustal stress change in middle section of Xiaojiang fault and its adjacent area[J]. Acta Seismologica Sinica, 2011, 33(6): 755-762 (in Chinese). [12] 王强. 基于震源机制解反演研究云南现今构造应力场特征[D]. 云南: 云南大学, 2015. WANG Qiang. Study on the characteristics of current tectonic stress field in Yunnan based on focal mechanism solution inversion[D]. Yunnan: Yunnan University, 2015 (in Chinese). [13] 田建慧, 罗艳. 中国大陆及其周边地区应力场特征[J]. 地震, 2019, 39(2): 110-121. TIAN Jian-hui, LUO Yan. Characteristics of stress field in China's mainland and surrounding areas[J]. Earthquake, 2019, 39(2): 110-121 (in Chinese). [14] 徐纪人, 赵志新, 石川有三. 中国大陆地壳应力场与构造运动区域特征研究[J]. 地球物理学报, 2008, 51(3): 770-781. XU Ji-ren, ZHAO Zhi-xin, Ishikawa Yuzo. Regional characteristics of crustal stress field and tectonic motions in and around Chinese mainland[J]. Chinese Journal of Geophysics, 2008, 51(3): 770-781 (in Chinese). [15] Tape C, Musé P, Simons M, et al. Multiscale estimation of GNSS velocity fields[J]. Geophysical Journal International, 2009, 179(2): 945-971. [16] 苏小宁, 孟国杰, 王振. 基于多尺度球面小波解算GNSS应变场的方法及应用[J]. 地球物理学报, 2016, 59(5): 1585-1595. SU Xiao-ning, MENG Guo-jie, WANG Zhen. Methodology and application of GPS strain field estimation based on multi-scale spherical wavelet[J]. Chinese Journal of Geophysics, 2016, 59(5): 1585-1595 (in Chinese). [17] Martínez-Garzón P, Kwiatek G, Ickrath M, et al. MSATSI: A MATLAB package for stress inversion combining solid classic methodology, a new simplified user‐handling, and a visualization tool[J]. Seismological Research Letters, 2014, 85(4): 896-904. [18] Bogdanova I, Vandergheynst P, Antoine J P, et al. Stereographic wavelet frames on the sphere[J]. Applied and Computational Harmonic Analysis, 2005, 19(2): 223-252. [19] Zhang P Z, Shen Z K, Wang M, et al. Continuous deformation of the Tibetan Plateau from global positioning system data[J]. Geology, 2004, 32(9): 809-812. [20] 郑文俊, 张培震, 袁道阳, 等. GPS观测及断裂晚第四纪滑动速率所反映的青藏高原北部变形[J]. 地球物理学报, 2009, 52(10): 2491-2508. DENG Wen-jun, ZHANG Pei-zhen, YUAN Dao-yang, et al. Deformation on the northern of the Tibetan plateau from GPS measurement and geologic rates of late quaternary along the major fault[J]. Chinese Journal of Geophysics, 2009, 52(10): 2491-2508 (in Chinese). [21] Han C R, Huang Z C, Xu M J, et al. Focal mechanism and stress field in the northeastern Tibetan Plateau: insight into layered crustal deformations[J]. Geophysical Journal International, 2019, 218(3): 2066-2078. [22] Pan Z Y, He J K, Shao Z G. Spatial variation in the present-day stress field and tectonic regime of northeast Tibet from moment tensor solutions of local earthquake data[J]. Geophysical Journal International, 2020, 221(1): 478-491. [23] Michael A J. Determination of stress from slip data: Faults and folds[J]. Journal of Geophysical Research, 1984, 89(B13): 11517-11526. [24] Hardebeck J L, Michael A J. Damped regional-scale stress inversions: Methodology and examples for southern California and the Coalinga aftershock sequence[J]. Journal of Geophysical Research, 2006, 111(B11): B11310. [25] Zhang P Z, Shen Z K, Wang M, et al. Continuous deformation of the Tibetan Plateau from globle positioning system data[J]. Geology, 2004, 32(9): 809-812. [26] 杨晓松, 马瑾. 大陆岩石圈解耦及块体运动讨论以青藏高原—川滇地区为例[J]. 地学前缘, 2003(S1): 240-247. YANG Xiao-song, MA Jin. Continental lithosphere decoupling implication for block movement[J]. Earth Science Frontiers, 2003(S1): 240-247 (in Chinese). [27] 韩存瑞. 青藏高原东缘地壳各向异性与应力应变场[D]. 南京: 南京大学, 2021. HAN Cun-rui. Crustal anisotropy and stress/strain field in the eastern margin of the Tibetan plateau[D]. Nanjing: Nanjing University, 2021 (in Chinese). [28] Klemperer S L. Crustal flow in Tibet: geophysical evidence for the physical state of Tibetan lithosphere, and inferred patterns of active flow[J]. Geological Society, London, Special Publications, 2006, 268: 39-70. [29] Huang Z C, Tilmann F, Xu M J, et al. Insight into NE Tibetan Plateau expansion from crustal and upper mantle anisotropy revealed by shear-wave splitting[J]. Earth and Planetary Science Letters, 2017, 478: 66-75. [30] Huang J L, Zhao D P. High-resolution mantle tomography of China and surrounding regions[J]. Journal of Geophysical Research, 2006, 111: B09305. [31] 潘宇航, 蒲举, 程建武, 等. 青藏高原东北缘SKS波分裂研究[J]. 地震工程学报, 2017, 39(1): 168-176. PAN Yu-hang, PU Ju, CHENG Jian-wu, et al. SKS wave splitting of the northeastern maigin of the Qinghai Tibet Plateau[J]. China Earthquake Engineering Journal, 2017, 39(1): 168-176 (in Chinese). [32] 张辉, 高原, 石玉涛, 等. 基于地壳介质各向异性分析青藏高原东北缘构造应力特征[J]. 地球物理学报, 2012, 55(1): 95-104. ZHANG Hui, GAO Yuan, SHI Yu-tao, et al. Tectonic stress analysis based on the crustal seismic anisotropy in the northeastern margin of Tibetan plateau[J]. Chinese Journal of Geophysics, 2012, 55(1): 95-104 (in Chinese). [33] Clark M K, Royden L H. Topographic ooze: Building the eastern margin of Tibet by lower crustal flow[J]. Geology, 2000, 28(8): 703-706. [34] Wang C Y, Han W B, Wu J P, et al. Crustal structure beneath the eastern margin of the Tibetan Plateau and its tectonic implications[J]. Journal of Geophysical Research: Solid Earth, 2007, 112(B7): B07307. [35] 常利军, 王椿镛, 丁志峰, 等. 青藏高原东北缘上地幔各向异性研究[J]. 地球物理学报, 2008, 51(2): 431-438. CHANG Li-jun, WANG Chun-yong, DING Zhi-feng, et al. Seismic anisotropy of upper mantle in the northeastern margin of the Tibetan plateau[J]. Chinese Journal of Geophysics, 2008, 51(2): 431-438 (in Chinese). |