[1] 邓起东.中国活动断裂[M]. 北京: 地震出版社, 1982. DENG Qi-dong. Active faults in China[M]. Beijing: Seismological Press, 1982 (in Chinese). [2] 谢富仁, 舒塞兵, 窦素芹, 等.海原、 六盘山断裂带至银川断陷第四纪构造应力场分析[J]. 地震地质, 2000, 22(2): 139-146. XIE Fu-ren, SHU Sai-bing, DOU Su-qin, et al. Quaternary tectonic stress field in the region of Haiyuan Liupanshan fault zone to Yinchuan fault depression[J]. Seismology and Geology, 2000, 22(2): 139-146 (in Chinese). [3] 孙赫, 徐晶, 柳皓元.基于InSAR的广义海原断裂带中东段现今深部运动特征[J]. 大地测量与地球动力学, 2017, 37(11): 1141-1145. SUN He, XU Jing, LIU Hao-yuan. Depth present-day movement in the mid-eastern segment of the Haiyuan fault zone based on InSAR[J]. Journal of Geodesy and Geodynamics, 2017, 37(11): 1141-1145 (in Chinese). [4] 郑文俊, 袁道阳, 何文贵.祁连山东段天桥沟-黄羊川断裂古地震活动习性研究[J]. 地震地质, 2004, 26(4): 645-657. ZHENG Wen-jun, YUAN Dao-yang, HE Wen-gui. Characteristics of Palaeo-earthquake activity along the active Tianqiaogou-Huangyangchuan fault on the eastern section of the Qilianshan mountains[J]. Seismology and Geology, 2004, 26(4): 645-657 (in Chinese). [5] Gaudemer Y, Tapponnier P, Meyer B, et al. Partitioning of crustal slip between linked, active faults in the eastern Qilian Shan, and evidence for a major seismic gap, the ‘Tianzhu gap', on the western Haiyuan Fault, Gansu (China)[J]. Geophysical Journal International, 1995, 120(3): 599-645. [6] 袁道阳, 刘百篪, 吕太乙, 等. 北祁连山东段活动断裂带的分段性研究[J]. 西北地震学报, 1998(4): 27-34. YUAN Dao-yang, LIU Bai-chi, LÜ Tai-yi, et al. Study on the segmentation in east segment of the northern Qilianshan fault zone[J]. Northwestern Seismological Journal, 1998(4): 27-34 (in Chinese). [7] 李彦宝, 甘卫军, 王阅兵, 等. 2016年门源MS6.4强震的发震构造及其对“天祝地震空区”的影响[J]. 大地测量与地球动力学, 2017, 37(8): 792-796+829. LI Yan-bao, GAN Wei-jun, WANG Yue-bing, et al. Seismogenic structure of the 2016 MS6.4 Menyuan earthquake and its effect on the Tianzhu seismic gap[J]. Journal of Geodesy and Geodynamics, 2017, 37(8): 792-796+829 (in Chinese). [8] 崔笃信, 王庆良, 胡亚轩, 等. 用GPS数据反演海原断裂带断层滑动速率和闭锁深度[J]. 地震学报, 2009, 31(5): 516-525. CUI Du-xin, WANG Qing-liang, HU Ya-xuan, et al. Inversion of GPS data for slip rates and locking depths of the Haiyuan fault[J]. Acta Seismologica Sinica, 2009, 31(5): 516-525 (in Chinese). [9] 刁法启, 汪荣江, 熊熊. 基于大地测量资料的震间断层变形模型: 从弹性到粘弹[C]. 2019年中国地球科学联合学术年会, 2019. DIAO Fa-qi, WANG Rong-jiang, XIONG Xiong. Interseismic fault deformation model based on geodetic data: from elastic to viscoelastic[C]. 2019 Annual Conference of Chinese Geosciences Union, 2019. [10] Wang M, Shen Z K. Present-day crustal deformation of continental China derived from GPS and its tectonic implications[J]. Journal of Geophysical Research: Solid Earth, 2020, 125(2): e2019JB018774. [11] Diao F Q, Xiong X, Wang R J, et al. Slip rate variation along the Kunlun fault (Tibet): Results from new GPS observations and a viscoelastic earthquake-cycle deformation model[J]. Geophysical Research Letters, 2019, 46(5): 2524-2533. [12] Savage J C, Burford R O. Geodetic determination of relative plate motion in central California[J]. Journal of Geophysical Research, 1973, 78(5): 832-845. [13] Savage J C, Prescott W H. Precision of geodolite distance measurements for determining fault movement[J]. Journal of Geophysical Research, 1973, 78(26): 6001-6008. [14] Scholz C H. Earthquakes and friction laws[J]. Nature, 1998, 391(6662): 37-42. [15] Madariaga R, Métois M, Vigny C, et al. Central Chile finally breaks[J]. Science, 2010, 328(5975): 181-182. [16] Hashimoto C, Noda A, Sagiya T, et al. Interplate seismogenic zones along the Kuril-Japan trench inferred from GPS data inversion[J]. Nature Geoscience, 2009, 2: 141-144. [17] Schurr B, Asch G, Hainzl S, et al. Gradual unlocking of plate boundary controlled initiation of the 2014 Iquique earthquake[J]. Nature, 2014, 512(7514): 299-302. [18] Jiang W L, Han Z J, Guo P, et al. Slip rate and recurrence intervals of the east Lenglongling fault constrained by morphotectonics: Tectonic implications for the northeastern Tibetan Plateau[J]. Lithosphere, 2017, 9(3): 417-430. [19] 王敏. GPS观测结果的精化分析与中国大陆现今地壳形变场研究[D]. 北京: 中国地震局地质研究所, 2009. WANG Min. Aanalysis of GPS data with high precision study on present-day crustal deformation in China[D]. Beijing: Institute of Geology, China Earthquake Administration, 2009 (in Chinese). [20] Qiao X, Qu C Y, Shan X J, et al. Interseismic slip and coupling along the Haiyuan fault zone constrained by InSAR and GPS measurements[J]. Remote Sensing, 2021, 13(16): 3333. [21] Li C Y, Zhang P Z, Yin J H, et al. Late Quaternary left-lateral slip rate of the Haiyuan fault, northeastern margin of the Tibetan Plateau[J]. Tectonics, 2009, 28(5): TC5010. [22] 环文林, 葛民, 常向东.1920年海原8½级大地震的多重破裂特征[J]. 地震学报, 1991, 13(1): 21-31. HUAN Wen-lin, GE Min, CHANG Xiang-dong. Multiple rupture characteristic of the 1920 Haiyuan M8½ earthquakes[J]. Acta Seismologica Sinica, 1991, 13(1): 21-31 (in Chinese). [23] Zhang P Z, Min W, Deng Q D, et al. Paleoearthquake rupture behavior and recurrence of great earthquakes along the Haiyuan fault, northwestern China[J]. Science in China (Series D: Earth Sciences), 2005, 48(3): 364-375. [24] Jolivet R, Candela t, Lasserre C, et al. The burst-like behavior of aseismic slip on a rough fault: The creeping section of the Haiyuan fault, China[J]. Bulletin of the Seismological Society of America , 2015, 105(1): 480-488. [25] Jolivet R, Lasserre C, Doin M P, et al. Spatio-temporal evolution of aseismic slip along the Haiyuan fault, China: Implications for fault frictional properties[J]. Earth and Planetary Science Letters , 2013, 377-378: 23-33. [26] Jolivet R, Lasserre C, Doin M P, et al. Shallow creep on the Haiyuan fault (Gansu, China) revealed by SAR interferometry[J]. Journal of Geophysical Research, 2012, 117: B06401. [27] Cavalié O, Lasserre C, Doin M P, et al. Measurement of interseismic strain across the Haiyuan fault (Gansu, China), by InSAR[J]. Earth and Planetary Science Letters, 2008, 275(3-4): 246-257. [28] 郝明, 李煜航, 秦珊兰. 基于GPS数据的海原—六盘山断裂带滑动速率亏损时空分布[J]. 地震地质, 2017, 39(3): 471-484. Hao M X, Li Y H, Qin S L. Spatial and temporal distribution of slip rate deficit across Haiyuan-Liupanshan fault zone constrained by GPS data[J]. Seismology and Geology, 2017, 39(3): 471-484 (in Chinese). [29] 甘卫军, 刘百篪. 景泰—天祝断裂单元与多重特征地震的危险性概率评估[J]. 地震地质, 2002, 24(1): 45-58. Gan W J, Liu B C. Probability of large earthquake recurrence along the Jingtai-Tianzhu active fault[J]. Seismology and Geology, 2002, 24(1): 45-58 (in Chinese). [30] 邵志刚, 张浪平, 马宏生, 等.基于形变观测分析2011年日本9.0级地震与断层运动间关系[J]. 地球物理学报, 2015, 58(3): 857-871. SHAO Zhi-gang, ZHANG Lang-ping, MA Hong-sheng, et al. The analysis of the relationship between Japanese MW9.0 earthquake on March 11, 2011 and the fault movement based on the GPS observation[J]. Chinese Journal of Geophysics, 2015, 58(3): 857-871 (in Chinese). |