[1] 付广裕, 祝意青, 高尚华, 等. 川西地区实测自由空气重力异常与EGM2008模型结果的差异[J]. 地球物理学报, 2013, 56(11): 3761-3769. FU Guang-yu, ZHU Yi-qing, GAO Shang-hua. Discrepancies between free air gravity anomalies from EGM2008 and the ones from dense gravity/GPS observations at west Sichuan Basin[J]. Chinese Journal of Geophysics, 2013, 56(11): 3761-3769 (in Chinese). [2] 杨光亮, 申重阳, 吴桂桔, 等. 金川—芦山—犍为剖面重力异常和地壳密度结构特征[J]. 地球物理学报, 2015, 58(7): 2424-2435. YANG Guang-liang, SHEN Chong-yang, WU Gui-ju, et al. Bouger gravity anomaly and crusal density structure in Jinchuan-Lushan-Qianwei profile[J]. Chinese Journal of Geophysics, 2015, 58(7): 2424-2435 (in Chinese). [3] 佘雅文, 付广裕, 苏小宁, 等. 六盘山地区地壳重力均衡与隆升机制研究[J]. 地球物理学进展, 2016, 31(4): 1464-1472. SHE Ya-wen, FU Guang-yu, SU Xiao-ning, et al. Crustal isostasy and uplifting mechanism of the Liupanshan area[J]. Progress in Geophysics, 2016, 31(4): 1464-1472 (in Chinese). [4] She Y W, Fu G Y. Uplift mechanism of the highest mountains at Eastern Himalayan syntaxis revealed by in situ dense gravimetry[J]. Geophysical Research Letters, 2020, 47: e2020GL091208. [5] Zhao Q, She Y W, Fu G Y. Gravity anomalies and lithospheric flexure in western Yunnan, China, deduced from a new dense gravimetry[J]. Geophysical Research Letters, 2021, 48: e2021GL095313. [6] Nikolakopoulos K G. Accuracy assessment of ALOS AW3D30 DSM and comparison to ALOS PRISM DSM created with classical photogrammetric techniques[J]. European Journal of Remote Sensing, 2020, 53(S2): 39-52. [7] Grohmann C H. Evaluation of TanDEM-X DEMs on selected Brazilian sites: Comparison with SRTM, ASTER GDEM and ALOS AW3D30[J]. Remote Sensing of Environment, 2018, 212: 121-133. [8] Tadono T, Nagai H, Ishida H, et al. Generation of the 30 m-mesh global digital surface model generated by ALOS PRISM[C]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, ISPRS, XLI-B4, 2016: 157-162. [9] González-Moradas M R, Viveen W. Evaluation of ASTER GDEM2, SRTMv3.0, ALOS AW3D30 and TanDEM-X DEMs for the Peruvian Andes against highly accurate GNSS ground control points and geomorphological-hydrological metrics[J]. Remote Sensing of Environment, 2020, 237: 111509. [10] Molnar P, England P, Martinod J. Mantle dynamics, uplift of the Tibetan Plateau, and the Indian Monsoon[J]. Reviews of Geophysics, 1993, 31(4): 357-396. [11] Royden L H, Burchfiel B C, van der Hilst R D. The geological evolution of the Tibetan Plateau[J]. Science, 2008, 321(5892): 1054-1058. [12] Lease R O, Burbank D W, Zhang H P, et al. Cenozoic shortening budget for the northeastern edge of the Tibetan Plateau: Is lower crustal flow necessary?[J]. Tectonics, 2012, 31: TC3011. [13] 徐锡伟, 吴熙彦, 于贵华, 等. 中国大陆高震级地震危险区判定的地震地质学标志及其应用[J]. 地震地质, 2017, 39(2): 219-275. XU Xi-wei, WU Xi-yan, YU Gui-hua, et al. Seismo-geological signatures for identifying M≥7.0 earthquake risk areas and their preliminary application in mainland China[J]. Seismology and Geology, 2017, 39(2): 219-275 (in Chinese). [14] Zhang G Q, Shen W B, Zhu Y Q, et al. Evaluation of ASTER GDEM in the northeastern margin of Tibetan Plateau in gravity reduction[J]. Geodesy and Geodynamics, 2017, 8(5): 335-341. [15] 祝意青, 赵云峰, 李铁明, 等. 2013年甘肃岷县漳县6.6级地震前后重力场动态变化[J]. 地震地质, 2014, 36(3): 667-676. ZHU Yi-qing, ZHAO Yun-feng, LI Tie-ming, et al. Dynamic variation of gravity field before and after the Minxian-Zhangxian MS6.6 earthquake on July 22, 2013, Gansu, China[J]. Seismology and Geology, 2014, 36(3): 667-676 (in Chinese). [16] 祝意青, 李铁明, 郝明, 等. 2016年青海门源MS6.4地震前重力变化[J]. 地球物理学报, 2016, 59(10): 3744-3752. ZHU Yi-qing, LI Tie-ming, HAO Ming, et al. Gravity Changes before the Menyuan, Qinghai MS6.4 earthquake of 2016[J]. Chinese Journal of Geophysics, 2016, 59(10): 3744-3752 (in Chinese). [17] Liang W F, Zhang G Q, Zhu Y Q, et al. Gravity variations before the Menyuan MS6.4 earthquake[J]. Geodesy and Geodynamics, 2016, 7(4): 223-229. [18] NGA. Earth Gravitational Model 2008 (EGM2008)[DS]. http://earth-infor.Nga.mil/GandG/wgs84/gravitymod/egm2008/index.html, 2010. [19] Heiskanen W A, Moritz H. Physical geodesy[J]. Bulletin Géodésique, 1967, 86(1): 491-492. [20] Foerste C, Bruinsma S L, Abrykosov O, et al. EIGEN-6C4: The latest combined global gravity field model including GOCE data up to degree and order 2190 of GFZ Potsdam and GRGS Toulouse[DS]. GFZ Data Services, 2014. https://doi.org/10.5880/icgem.2015.1. [21] She Y W, Fu G Y, Wang Z H, et al. Gravity anomalies and lithospheric flexure around the Longmen Shan deduced from combinations of in situ observations and EGM2008 data[J]. Earth, Planets and Space, 2016, 68: 163. [22] Wang Z Y, Fu G Y, She Y W. Crustal density structure, lithosphere flexure mechanism, and isostatic state throughout the Qinling Orogen revealed by in situ dense gravity observations[J]. Journal of Geophysical Research: Solid Earth, 2018, 123(11): 10026-10039. [23] Fu G Y, She Y W, Zhang G Q, et al. Lithospheric equilibrium, environmental changes, and potential induced-earthquake risk around the newly impounded Baihetan Reservoir, China[J]. Remote Sensing, 2021, 13(19): 3895. |