EARTHQUAKE ›› 2023, Vol. 43 ›› Issue (1): 105-123.doi: 10.12196/j.issn.1000-3274.2023.01.009
Previous Articles Next Articles
CHE Zi-qiang, WU Zhong-liang, GAO Yuan
Received:
2022-06-15
Revised:
2022-07-04
Online:
2023-01-31
Published:
2023-05-15
CLC Number:
CHE Zi-qiang, WU Zhong-liang, GAO Yuan. Rayleigh Wave Phase Velocity and Azimuthal Anisotropy across Haiyuan Fault Zone and Its Adjacent Area Derived from Ambient Noise Tomography[J]. EARTHQUAKE, 2023, 43(1): 105-123.
[1] 田勤俭, 丁国瑜. 青藏高原东北隅似三联点构造特征[J]. 中国地震, 1998(4): 27-35. TIAN Qin-jian, DING Guo-yu. The tectonic feature of a quasi trijunction in the northeastern corner of Qinghai Xizang Plateau[J]. Earthquake Research in China, 1998(4): 27-35 (in Chinese). [2] 国家地震局地质研究所, 宁夏回族自治区地震局. 海原活动断裂带[M]. 北京: 地震出版社, 1990. Institute of Geology, State Earthquake Administration, Seismological Bureau of Ningxia Hui Autonomous Region. Haiyuan active fault zone[M]. Beijing: Seismological Press, 1990 (in Chinese). [3] 王伟涛, 张培震, 郑德文, 等. 青藏高原东北缘海原断裂带晚新生代构造变形[J]. 地学前缘, 2014, 21(4): 266-274. WANG Wei-tao, ZHANG Pei-zhen, ZHENG De-wen, et al. Late Cenozoic tectonic deformation of the Haiyuan fault zone in the northeastern margin of the Tibetan Plateau[J]. Earth Science Frontiers, 2014, 21(4): 266-274 (in Chinese). [4] 施炜, 刘源, 刘洋, 等. 青藏高原东北缘海原断裂带新生代构造演化[J]. 地学前缘, 2013, 20(4): 1-17. SHI Wei, LIU Yuan, LIU Yang, et al. Cenozoic evolution of the Haiyuan fault zone in the northeast margin of the Tibetan Plateau[J]. Earth Science Frontiers, 2013, 20(4): 1-17 (in Chinese). [5] 邓起东, 张维岐, 张培震, 等. 海原走滑断裂带及其尾端挤压构造[J]. 地震地质, 1989, 11(1): 1-14. DENG Qi-dong, ZHANG Wei-qi, ZHANG Pei-zhen, et al. Haiyuan strike-slip fault zone and its compression structure of the end[J]. Seismology and Geology, 1989, 11(1): 1-14 (in Chinese). [6] Zhang P Z, Burchfiel B C, Molnar P, et al. Amount and style of late Cenozoic deformation in the Liupan Shan area, Ningxia autonomous region, China[J]. Tectonics, 1991, 10(6): 1111-1129. [7] Zheng D W, Zhang P Z, Wan J L, et al. Rapid exhumation at ~8 Ma on the Liupan Shan thrust fault from apatite fission-track thermochronology: Implications for growth of the northeastern Tibetan Plateau margin[J]. Earth and Planetary Science Letters, 2006, 248(1-2): 198-208. [8] 张培震, 闵伟, 邓起东, 等. 海原活动断裂带的古地震与强震复发规律[J]. 中国科学(D辑), 2003, 33(8): 705-713. ZHANG Pei-zhen, MIN Wei, DENG Qi-dong, et al. Paleoearthquake rupture behavior and recurrence of great earthquakes along the Haiyuan fault, northwestern China[J]. Science in China (Series D), 2003, 33(8): 705-713 (in Chinese). [9] 周民都, 吕太乙, 张元生, 等. 青藏高原东北缘地质构造背景及地壳结构研究[J]. 地震学报, 2000, 22(6): 645-653. ZHOU Min-du, LÜ Tai-yi, ZHANG Yuan-sheng, et al. The geological structure background and the crustal structure in the northeastern margin of the Qinghai-Tibetan Plateau[J]. Acta Seismologica Sinica, 2000, 22(6): 645-653 (in Chinese). [10] 李松林, 张先康, 张成科, 等. 玛沁—兰州—靖边地震测深剖面地壳速度结构的初步研究[J]. 地球物理学报, 2002, 45(2): 210-217. LI Song-lin, ZHANG Xian-kang, ZHANG Cheng-ke, et al. A preliminary study on the crustal velocity structure of Maqin—Lanzhou—Jingbian by means of deep seismic sounding profile[J]. Chinese Journal of Geophysics, 2002, 45(2): 210-217 (in Chinese). [11] 王海燕, 高锐, 尹安, 等. 深地震反射剖面揭示的海原断裂带深部几何形态与地壳形变[J]. 地球物理学报, 2012, 55(12): 3902-3909. WANG Hai-yan, GAO Rui, YIN An, et al. Deep structure geometry features of Haiyuan fault and deformation of the crust revealed by deep seismic reflection profiling[J]. Chinese Journal of Geophysics, 2012, 55(12): 3902-3909 (in Chinese). [12] 林吉焱, 段永红. 海原构造区及其周缘上部地壳结构研究[J]. 地震学报, 2016, 38(2): 179-187. LIN Ji-yan, DUAN Yong-hong. Upper crustal structure of Haiyuan tectonic zone and its surrounding areas[J]. Acta Seismologica Sinica, 2016, 38(2): 179-187 (in Chinese). [13] 王帅军, 刘保金, 田晓峰, 等. 青藏高原东北缘地壳P波速度结构及其对地壳变形研究的启示[J]. 中国科学: 地球科学, 2019, 49(2): 368-382. WANG Shuai-jun, LIU Bao-jin, TIAN Xiao-feng, et al. Crustal P-wave velocity structure in the northeastern margin of the Qinghai-Tibetan Plateau and insights into crustal deformation[J]. Science China: Earth Science, 2019, 49(2): 368-382 (in Chinese). [14] 詹艳, 赵国泽, 陈小斌, 等. 宁夏海原大震区西安州—韦州剖面大地电磁探测与研究[J]. 地球物理学报, 2004, 47(2): 274-281. ZHAN Yan, ZHAO Guo-ze, CHEN Xiao-bin, et al. Crustal structure from magnetotelluric profiling in the Haiyuan earthquake area, Ningxia Hui Autonomous Region, China[J]. Chinese Journal of Geophysics, 2004, 47(2): 274-281 (in Chinese). [15] 詹艳, 杨皓, 赵国泽, 等. 青藏高原东北缘海原构造带马东山阶区深部电性结构特征及其构造意义[J]. 地球物理学报, 2017, 60(6): 2371-2384. ZHAN Yan, YANG Hao, ZHAO Guo-ze, et al. Deep electrical structure of crust beneath the Madongshan step area at the Haiyuan fault in the northeastern margin of the Tibetan plateau and tectonic implications[J]. Chinese Journal of Geophysics, 2017, 60(6): 2371-2384 (in Chinese). [16] Cheng B, Cheng S Y, Zhang G W, et al. Seismic structure of the Helan-Liupan-Ordos western margin tectonic belt in North-Central China and its geodynamic implications[J]. Journal of Asian Earth Sciences, 2014, 87(15): 141-156. [17] 肖卓, 高原. 利用双差成像方法反演青藏高原东北缘及其邻区地壳速度结构[J]. 地球物理学报, 2017, 60(6): 2213-2225. XIAO Zhuo, GAO Yuan. Crustal velocity structure beneath the northeastern Tibetan plateau and adjacent regions derived from double difference tomography[J]. Chinese Journal of Geophysics, 2017, 60(6): 2213-2225 (in Chinese). [18] 莘海亮, 曾宪伟, 康敏, 等. 海原弧形构造区地壳三维精细速度结构成像[J]. 地球物理学报, 2020, 63(3): 897-914. XIN Hai-liang, ZENG Xian-wei, KANG Min, et al. Crustal fine velocity structure of the Haiyuan arcuate tectonic zone from double-difference tomography[J]. Chinese Journal of Geophysics, 2020, 63(3): 897-914 (in Chinese). [19] 李永华, 吴庆举, 安张辉, 等. 青藏高原东北缘地壳S波速度结构与泊松比及其意义[J]. 地球物理学报, 2006, 49(5): 1359-1368. LI Yong-hua, WU Qing-ju, AN Zhang-hui, et al. The Poisson ratio and crustal structure across the NE Tibetan Plateau determined from receiver functions[J]. Chinese Journal of Geophysics, 2006, 49(5): 1359-1368 (in Chinese). [20] Pan S Z, Niu F L. Large contrasts in crustal structure and composition between the Ordos Plateau and the NE Tibetan Plateau from receiver function analysis[J]. Earth and Planetary Science Letters, 2011, 303(3-4): 291-298. [21] 许英才, 曾宪伟, 许文俊, 等. 基于台阵的青藏高原东北缘海原—六盘山断裂带及邻区地壳结构研究[J]. 中国地震, 2018, 34(3): 484-497. XU Ying-cai, ZENG Xian-wei, XU Wen-jun, et al. Research on crustal structure of the Haiyuan—Liupanshan fault zone and its adjacent areas in northeastern Qinghai-Tibetan Plateau based on seismic array[J]. Earthquakes Research in China, 2018, 34(3): 484-497 (in Chinese). [22] Zheng Y, Yang Y J, Ritzwoller M H, et al. Crustal structure of the northeastern Tibetan Plateau, the Ordos block and the Sichuan Basin from ambient noise tomography[J]. Earthquake Science, 2010, 23(5): 465-476. [23] Li H Y, Shen Y, Huang Z X, et al. The distribution of the mid-to-lower crustal low-velocity zone beneath the northeastern Tibetan Plateau revealed from ambient noise tomography[J]. Journal of Geophysical Research: Solid Earth, 2014, 119(3): 1954-1970. [24] 钟世军, 吴建平, 房立华, 等. 青藏高原东北缘及周边地区基于程函方程的面波层析成像[J]. 地球物理学报, 2017, 60(6): 2304-2314. ZHONG Shi-jun, WU Jian-ping, FANG Li-hua, et al. Surface wave Eikonal tomography in and around the northeastern margin of the Tibetan Plateau[J]. Chinese Journal of Geophysics, 2017, 60(6): 2304-2314 (in Chinese). [25] 潘佳铁, 李永华, 吴庆举, 等. 基于密集流动地震台阵的青藏高原东北缘及邻区Rayleigh波相速度层析成像[J]. 地球物理学报, 2017, 60(6): 2291-2303. PAN Jia-tie, LI Yong-hua, WU Qing-ju, et al. Phase velocity maps of Rayleigh wave based on a dense coverage and portable seismic array in NE Tibetan Plateau and its adjacent regions[J]. Chinese Journal of Geophysics, 2017, 60(6): 2291-2303 (in Chinese). [26] Shen W S, Ritzwoller M H, Kang D, et al. A seismic reference model for the crust and uppermost mantle beneath China from surface wave dispersion[J]. Geophysical Journal International, 2016, 206(2): 954-979. [27] 王琼, 高原. 基于背景噪声研究青藏高原东北缘瑞利波相速度和方位各向异性[J]. 地球物理学报, 2018, 61(7): 2760-2775. WANG Qiong, GAO Yuan. Rayleigh wave phase velocity and azimuthal anisotropy in the northeastern margin of Tibetan Plateau from seismic ambient noise[J]. Chinese Journal of Geophysics, 2018, 61(7): 2760-2775 (in Chinese). [28] 付媛媛, 肖卓. 青藏高原东北缘及邻区Rayleigh和Love波背景噪声层析成像[J]. 地球物理学报, 2020, 63(3): 860-870. FU Yuan-yuan, XIAO Zhuo. Ambient noise tomography of Rayleigh and Love wave in Northeast Tibetan Plateau and adjacent regions[J]. Chinese Journal of Geophysics, 2020, 63(3): 860-870 (in Chinese). [29] 太龄雪, 高原. 鄂尔多斯块体西侧地壳各向异性初步研究[J]. 地震, 2017, 37(1): 82-91. TAI Ling-xue, GAO Yuan. Preliminary study of crustal anisotropy in the west of Ordos block[J]. Earthquake, 2017, 37(1): 82-91 (in Chinese). [30] 张晖, 高原, 石玉涛, 等. 鄂尔多斯块体北缘与西缘地区地壳各向异性特征[J]. 地球物理学报, 2020, 63(6): 2230-2247. ZHANG Hui, GAO Yuan, SHI Yu-tao, et al. Crustal seismic anisotropy beneath the northern and western margins of the Ordos block[J]. Chinese Journal of Geophysics, 2020, 63(6): 2230-2247 (in Chinese). [31] 许英才, 高原, 石玉涛, 等. 鄂尔多斯块体西缘地壳介质各向异性: 从银川地堑到海原断裂带[J]. 地球物理学报, 2019, 62(11): 4239-4258. XU Ying-cai, GAO Yuan, SHI Yu-tao, et al. Crustal seismic anisotropy in the west margin of the Ordos block: From the Yinchuan graben to the Haiyuan fault zone[J]. Chinese Journal of Geophysics, 2019, 62(11): 4239-4258 (in Chinese). [32] Ye Z, Li Q S, Gao R, et al. Anisotropic regime across northeastern Tibetan and its geodynamic implications[J]. Tectonophysics, 2016, 671: 1-8. [33] Huang Z C, Tilmann F, Xu M J, et al. Insight into NE Tibetan Plateau expansion from crustal and upper mantle anisotropy revealed by shear-wave splitting[J]. Earth and Planetary Science Letters, 2017, 478: 66-75. [34] Shi Y T, Gao Y, Shen X Z, et al. Multiscale spatial distribution of crustal seismic anisotropy beneath the northeastern margin of the Tibetan Plateau and tectonic implications of the Haiyuan fault[J]. Tectonophysics, 2020, 774: 228274. [35] 郭桂红, 武澄泷, 唐国彬, 等. 青藏高原东北缘壳幔各向异性研究: 基于SKS和Pms震相分析[J]. 地球物理学报, 2019, 62(5): 1650-1662. GUO Gui-hong, WU Cheng-long, TANG Guo-bin, et al. Seismic anisotropy of the northeastern margin of the Tibetan Plateau derived from analysis of SKS and Pms seismic phases[J]. Chinese Journal of Geophysics, 2019, 62(5): 1650-1662 (in Chinese). [36] Xu X M, Niu F L, Ding Z F, et al. Complicated crustal deformation beneath the NE margin of the Tibetan plateau and its adjacent areas revealed by multi-station receiver-function gathering[J]. Earth and Planetary Science Letters, 2018, 497: 204-216. [37] 沈胜意, 高原, 刘同振. 剪切波分裂揭示的青藏高原东北缘分层各向异性形态: 从海原断裂至银川地堑[J]. 地球物理学报, 2022, 65(5): 1595-1611. SHEN Sheng-yi, GAO Yuan, LIU Tong-zhen. Two-layer anisotropy revealed by shear wave splitting beneath the NE margin of Tibetan Plateau: From Haiyuan fault to Yinchuan Garben[J]. Chinese Journal of Geophysics, 2022, 65(5): 1595-1611 (in Chinese). [38] Yao H J, van der Hilst R D, de Hoop M V. Surface-wave array tomography in SE Tibet from ambient seismic noise and two-station analysis-I. Phase velocity maps[J]. Geophysical Journal International, 2006, 166(2): 732-744. [39] Yao H J, van der Hilst R D, Montagner J P. Heterogeneity and anisotropy of the lithosphere of SE Tibet from surface wave array tomography[J]. Journal of Geophysical Research: Solid Earth, 2010, 115(B12): B12307. [40] Yao H J, Gouédard P, Collins J A, et al. Structure of young East Pacific Rise lithosphere from ambient noise correlation analysis of fundamental- and higher-mode Scholte-Rayleigh waves[J]. Comptes Rendus Geoscience, 2011, 341(8-9): 571-583. [41] Zhang Y Y, Yao H J, Yang H Y, et al. 3-D crustal shear-wave velocity structure of the Taiwan Strait and Fujian, SE China, revealed by ambient noise tomography[J]. Journal of Geophysical Research: Solid Earth, 2018, 123(9): 8016-8031. [42] Fang H J, Yao H J, Zhang H J, et al. Direct inversion of surface wave dispersion for three-dimensional shallow crustal structure based on ray tracing: Methodology and application[J]. Geophysical Journal International, 2015, 201(3): 1251-1263. [43] Liu C M, Yao H J, Yang H J, et al. Direct inversion for three-dimensional shear wave speed azimuthal anisotropy based on surface wave ray tracing: Methodology and application to Yunnan, Southwest China[J]. Journal of Geophysical Research: Solid Earth, 2019, 124(11): 11394-11413. [44] Rawlinson N, Sambridge M. Wave front evolution in strongly heterogeneous layered media using the fast marching method[J]. Geophysical Journal International, 2004, 156(3): 631-647. [45] 吴晶, 高原, 陈运泰. 首都圈东南部地区地壳介质各向异性[J]. 地震学报, 2008, 30(1): 1-11. WU Jing, GAO Yuan, CHEN Yun-tai. Crustal seismic anisotropy in southeastern Capital area, China[J]. Acta Seismologica Sinica, 2008, 30(1): 1-11 (in Chinese). [46] Hao S J, Huang Z C, Han C R, et al. Layered crustal azimuthal anisotropy beneath the northeastern Tibetan Plateau revealed by Rayleigh-wave Eikonal tomography[J]. Earth and Planetary Science Letters, 2021, 563: 116891. [47] Rabbel W, Mooney W D. Seismic anisotropy of the crystalline crust: What does it tell us?[J]. Terra Nova, 1996, 8: 16-21. [48] Montagner J P, Guillot L. Seismic anisotropy and global geodynamics[J]. Reviews in Mineralogy and Geochemistry, 2002, 51(1): 353-385. [49] Crampin S, Peacock S. A review of the current understanding of seismic shear-wave splitting in the Earth’s crust and common fallacies in interpretation[J]. Wave Motion, 2008, 45(6): 675-722. [50] Silver P G, Chan W W. Shear wave splitting and subcontinental mantle deformation[J]. Journal of Geophysical Research: Solid Earth, 1991, 96(B10): 16429-16454. [51] Silver P G. Seismic anisotropy beneath the continents: Probing the depths of geology[J]. Annual Review of Earth and planetary Sciences, 1996, 24: 385-432. [52] 盛书中, 万永革, 黄骥超, 等. 应用综合震源机制解法推断鄂尔多斯块体周缘现今地壳应力场的初步结果[J]. 地球物理学报, 2015, 58(2): 436-452. SHENG Shu-zhong, WAN Yong-ge, HUANG Ji-chao, et al. Present tectonic stress field in the Circum-Ordos region deduced from composite focal mechanism method[J]. Chinese Journal of Geophysics, 2015, 58(2): 436-452 (in Chinese). [53] 李文辉, 高锐, 王海燕, 等. 六盘山断裂带及其邻区地壳结构[J]. 地球物理学报2017, 60(6): 2265-2278. LI Wen-hui, GAO Rui, WANG Hai-yan, et al. Crustal structure beneath the Liupanshan fault zone and adjacent regions[J]. Chinese Journal of Geophysics, 2017, 60(6): 2265-2278 (in Chinese). [54] 赵金仁, 范振宇, 刘保金, 等. 爆破地震揭示的华北西部高分辨基底速度结构[J]. 科学通报, 2017, 62(36): 4294-4306. ZHAO Jin-ren, FAN Zhen-yu, LIU Bao-jin, et al. Velocity structure of the western North China basement from high-resolution wide-angle reflection/refraction profiles[J]. Chinese Science Bulletin, 2017, 62(36): 4294-4306 (in Chinese). [55] 高奕霖, 赵静, 龙晓平. 祁连马衔山岩群新元古代S型花岗岩地球化学特征及其地质意义[J]. 西北大学学报(自然科学版), 2021, 51(6): 969-984. GAO Yi-lin, ZHAO Jing, LONG Xiao-ping. Geochemistry of Neoproterozoic S-type granites from the Maxianshan group in the Qilian Orogenic Belt and its geological implications[J]. Journal of Northwest University (Natural Science Edition), 2021, 51(6): 969-984 (in Chinese). [56] 谢振新, 吴庆举, 张瑞青. 青藏高原东北缘地壳各向异性及其动力学意义[J]. 地球物理学报, 2017, 60(6): 2315-2325. XIE Zhen-xin, WU Qing-ju, ZHANG Rui-qing. Crustal anisotropy beneath northeastern margin of the Tibetan Plateau and its dynamic implications[J]. Chinese Journal of Geophysics, 2017, 60(6): 2315-2325 (in Chinese). [57] Gao Y, Wu J, Fukao Y, et al. Shear wave splitting in the crust in North China: Stress, faults and tectonic implications[J]. Geophysical Journal International, 2011, 187(2): 642-654. |
[1] | BO Wan-ju, ZHANG Li-cheng, SU Guo-ying, XU Dong-zhuo, ZHAO Li-jun. Thoughts on Monitoring and Forecasting Methods of Strong Earthquake with Crust Deformation Data [J]. EARTHQUAKE, 2024, 44(1): 64-77. |
[2] | YANG Wei-jia, ZHOU Yan-jie, JIANG En-yuan, SHI Yu-tao, MA Xiao, HE Xi-jun, HUANG Xue-yuan. Tomographic Study on the Velocity Structures and P-wave Azimuthal Anisotropy of the 2019 Changning MS6.0 Earthquake Surrounding Area [J]. EARTHQUAKE, 2023, 43(4): 1-20. |
[3] | KOU Hua-dong, WANG Wei-jun, YAN Kun, YE Zhi-peng, LÜ Heng-ru. Ambient Noise Shallow Structure Imaging with Distributed Acoustic Sensing: A Case Study in Fangshan, Beijing [J]. EARTHQUAKE, 2023, 43(3): 50-65. |
[4] | ZHANG Jing-ye, SUN Ke, ZHANG Guo-hong. Research Progress in Data Processing and Application of Deep Learning in InSAR Crustal Deformation Observation [J]. EARTHQUAKE, 2023, 43(2): 166-188. |
[5] | ZHANG Yi, GUO Zhen, ZHU Pei-yu, ZHU Jia-miao, DAI Le-xiang. Rayleigh Wave Phase Velocity Maps of Southwest Yunnan Based on Ambient Noise Tomography [J]. EARTHQUAKE, 2023, 43(1): 124-136. |
[6] | WANG Fei, DIAO Fa-qi, PAN Zheng-yang, SHAO Zhi-gang. Analysis of the Generalized Haiyuan Fault Motion State Based on Crustal Deformation Observation Data [J]. EARTHQUAKE, 2022, 42(4): 14-24. |
[7] | ZOU Fang, MENG Guo-jie, SU Xiao-ning, WU Wei-wei, ZHAO Qian, SHE Ya-wen, Thant Myo. Characterstics of Tectonic Deformation before the 2021 Yangbi MS6.4 Earthquake in Yunnan [J]. EARTHQUAKE, 2022, 42(3): 21-36. |
[8] | ZHANG Hai-yang, LI Bo, SU Shu-peng, WANG Zhao-jing, LIU De-qiang, ZHAO Hui-qin, MAO Feng-long. Tempo-spatial Variation Characteristics of Lithospheric Magnetic Field in Zhangjiakou-Bohai Seismic Belt [J]. EARTHQUAKE, 2022, 42(1): 133-144. |
[9] | LIU Xi-kang, LI Yuan, DING Zhi-feng, CHANG Li-jun, WANG Yue-dong. A Study on Variation Characteristics of Shear-wave Splitting in the September 7, 2012 Yiliang Earthquake Region [J]. EARTHQUAKE, 2020, 40(1): 73-83. |
[10] | WU Peng, JIA Hua, ZHANG Xiao-tao, WANG Xue-fei, LIU Shuang. Characteristics of Crustal Thickness and Velocity Ratio atthe Junction of Shanxi, Hebei and Inner Mongolia [J]. EARTHQUAKE, 2019, 39(4): 63-75. |
[11] | LI Ting-ting, LIU Li, HU Guang-wu, CHEN Fei. Distribution of Wave Velocity Ratio and Poisson′s Ratio in Jiangsu Area [J]. EARTHQUAKE, 2019, 39(3): 149-157. |
[12] | PANG Ya-jin, CHENG Hui-hong, DONG Pei-yu, SHI Yao-lin. Analysis of Regional Stress Disturbance Caused by Strong Earthquakes in Northern Tianshan: Taking 2012 Yili M6.6 Earthquake and 2017 Jinghe M6.6 Earthquakes as an Example [J]. EARTHQUAKE, 2019, 39(3): 127-137. |
[13] | YANG Yan-Ming, CHEN Jing, XIONG Feng, ZHANG Yun, MA Yuan, JIA Xin-Ye, JIA Yan-jie. Distribution of Crustal Thickness and Poisson's Ratio beneath the Northern Margin of the Western Part of North China Craton and Adjacent Areas [J]. EARTHQUAKE, 2019, 39(2): 97-109. |
[14] | YANG Bo, ZHAN Wei, LIANG Hong-bao, ZHANG Feng-shuang, YANG Guo-hua. Persistent Impact of the 2011 Tohoku-Oki Earthquake in Japan on Crustal Deformation in Northeast China [J]. EARTHQUAKE, 2019, 39(2): 88-96. |
[15] | CHEN Jia, GAO Qiong, WANG Jun, DENG Jia-mei. Crustal Depth and S Wave Velocity Structure in Chenghai Fault Zone from Receiver Functions [J]. EARTHQUAKE, 2019, 39(1): 72-80. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||