[1] 周德红, 冯豪, 程乐棋, 等. 遗传算法优化的BP神经网络在地震死亡人数评估中的应用[J]. 安全与环境学报, 2017, 17(6): 2267-2272. ZHOU De-hong, FENG Hao, CHENG Le-qi, et al. Earthquake casualty assessment based on the BP neural network of the optimized genetic algorithm[J]. Journal of Safety and Environment, 2017, 17(6): 2267-2272 (in Chinese). [2] 袁小祥, 王晓青, 窦爱霞, 等. 面向地震风险评估的人口空间格网化技术研究[J]. 地震, 2018, 38(4): 151-158. YUAN Xiao-xiang, WANG Xiao-qing, DOU Ai-xia, et al. Spatial grid transformation technology of population data for seismic risk assessment[J]. Earthquake, 2018, 38(4): 151-158 (in Chinese). [3] 邵志刚, 王芃. 2008年汶川8.0级地震对地震预测研究的启示思考[J]. 地震, 2018, 38(2): 1-10. SHAO Zhi-gang, WANG Peng. Reflections on earthquake prediction research ten years after the 2008 Wenchuan MS8.0 earthquake[J]. Earthquake, 2018, 38(2): 1-10 (in Chinese). [4] Yu H, Qiang M, Liu S-Q. Territorial suitability assessment and function zoning in the Jiuzhaigou earthquake-stricken area[J]. Journal of Mountain Science, 2019, 16(1): 195-206. [5] Li J C, Qu Z, Wang T. Lessons from the seismic behavior of a steel grid roof structure heavily damaged in Lushan earthquake[J]. Earthquake Engineering and Engineering Vibration, 2019, 18(1): 95-111. [6] 施伟华, 陈坤华, 谢英情, 等. 云南地震灾害人员伤亡预测方法研究[J]. 地震研究, 2012, 35(3): 387-392. SHI Wei-hua, CHEN Kun-hua, XIE Ying-qing, et al. Prediction method research on casualties due to earthquake disaster in Yunnan[J]. Journal of Seismological Research, 2012, 35(3): 387-392 (in Chinese). [7] 吴将丰, 王海霞. 基于AMOS的地震人员伤亡影响因素分析[J]. 地震工程与工程振动, 2013, 33(2): 221-228. WU Jiang-feng, WANG Hai-xia. The factor analysis of earthquake casualties based on AMOS[J]. Earthquake Engineering and Engineering Dynamics, 2013, 33(2): 221-228 (in Chinese). [8] 陈黛, 白鹏飞, 蔡冬雪. 地震灾害人员伤亡预测模型研究[J]. 数学的实践与认识, 2017, 47(13): 208-215. CHEN Dai, BAI Peng-fei, CAI Dong-xue. Study on the prediction model of human casualties in earthquake disasters[J]. Journal of Mathematics in Practice and Theory, 2017, 47(13): 208-215 (in Chinese). [9] Tang P, Zhang H D, Ye T H, et al. A novel method for chemistry tabulation of strained premixed/stratified flames based on principal component analysis[J]. Applied Mathematics and Mechanics (English Edition), 2018, 39(6): 855-866. [10] Yousefi F, Amoozandeh Z. A new model to predict the densities of nanofluids using statistical mechanics and artificial intelligent plus principal component analysis[J]. Chinese Journal of Chemical Engineering, 2017, 25(9): 1273-1281. [11] 袁红春, 赵彦涛, 刘金生. 基于PCA-NARX神经网络的氨氮预测[J]. 大连海洋大学学报, 2018, 33(6): 808-813. YUAN Hong-chun, ZHAO Yan-tao, LIU Jin-sheng. Ammonia nitrogen level forecasting based on PCA-NARX neural network[J]. Journal of Dalian Ocean University, 2018, 33(6): 808-813 (in Chinese). [12] 刘鸿斌, 李祥宇, 杨冲. 基于PCA降维模型的造纸废水处理过程软测量建模[J]. 中国造纸学报, 2018, 33(4): 50-57. LIU Hong-bin, LI Xiang-yu, YANG Chong. Soft sensor modeling of papermaking waste water treatment process using PCA dimensional reduction models[J]. Transactions of China Pulpand Paper, 2018, 33(4): 50-57 (in Chinese). [13] 陈伟根, 滕黎, 刘军, 彭尚怡, 孙才新. 基于遗传优化支持向量机的变压器绕组热点温度预测模型[J]. 电工技术学报, 2014, 29(1): 44-51. CHEN Wei-gen, TENG Li, LIU Jun, et al. Transformer winding hot-spot temperature prediction model of support vector machine optimized by genetic algorithm[J]. Transactions of China Electrotechnical Society, 2014, 29(1): 44-51 (in Chinese). [14] 吴景龙, 杨淑霞, 刘承水. 基于遗传算法优化参数的支持向量机短期负荷预测方法[J]. 中南大学学报(自然科学版), 2009, 40(1): 180-184. WU Jing-long, YANG Shu-xia, LIU Cheng-shui. Parameter selection for support vectormachines based on genetic algorithms to short-term power load forecasting[J]. Journal of Central South University (Science and Technology), 2009, 40(1): 180-184 (in Chinese). [15] Mohammad M, Ebrahim S, Mashallah R. Development of a least squares support vector machine model for prediction of natural gas hydrate formation temperature[J]. Chinese Journal of Chemical Engineering, 2017, 25(9): 1238-1248. [16] Sananda K, Deepak K, Arun M. Future changes in rainfall temperature and reference evapotranspiration in the central India by least square support vector machine[J]. Geoscience Frontiers, 2017, 8(3): 583-596. [17] 苏亮, 何海健. 基于SVM的RC框架结构地震易损性分析[J]. 华中科技大学学报(自然科学版), 2018, 46(5): 115-120. SU Liang, HE Hai-jian. Seismic vulnerability assessment for RC frame structure based on SVM[J]. J.Huazhong Univ.of Sci.& Tech.(Natural Science Edition), 2018, 46(5): 115-120 (in Chinese). [18] 毛志勇, 黄春娟, 路世昌. 基于PSO-SVM的砂土地震液化预测模型[J]. 中国安全科学学报, 2018, 28(3): 25-30. MAO Zhi-yong, HUANG Chun-juan, LU Shi-chang. PSO-SVM based model for prediction of sandy soil liquefaction[J]. China Safety Science Journal, 2018, 28(3): 25-30 (in Chinese). [19] 孙振宇, 彭苏萍, 邹冠贵. 基于SVM算法的地震小断层自动识别[J]. 煤炭学报, 2017, 42(11): 2945-2952. SUN Zhen-yu, PENG Su-ping, ZOU Guan-gui. Automatic identification of small faults based on SVM and seismic data[J]. Journal of China Coal Society, 2017, 42(11): 2945-2952 (in Chinese). [20] Fatemeh A, Baharak M, Hasan A, et al. Landslide susceptibility mapping using Genetic Algorithm for the Rule Set Production (GARP) model[J]. Journal of Mountain Science, 2018, 15(9): 2013-2026. [21] 王世辉, 王仪明, 武淑琴, 等. 基于GA-SVM模型的印刷套准识别[J]. 传感器与微系统, 2018, 37(11): 142-144. WANG Shi-hui, WANG Yi-ming, WU Shu-qin, et al. Printing registration recognition based on GA-SVM model[J]. Transducer and Microsystem Technologies, 2018, 37(11): 142-144 (in Chinese). [22] 温廷新, 于凤娥, 邵良杉, 等. 基于GA-SVM的隧道围岩分类研究[J]. 公路交通科技, 2018, 35(9): 63-70. WEN Ting-xin, YU Feng-e, SHAO Liang-shan, et al. Study on classification of tunnel surrounding rock based on GA-SVM[J]. Journal of Highway and Transportation Research and Development, 2018, 35(9): 63-70 (in Chinese). |