[1] 杨竹转, 邓志辉, 刘春国, 等. 中国大陆井水位与水温动态对汶川MS8.0地震的同震响应特征分析[J]. 地震地质, 2008, 30(4): 895-905. YANG Zhu-zhuan, DENG Zhi-hui, LIU Chun-guo, et al. Coseismic changes of water level and water temperature caused by MS8.0 Wenchuan earthquake[J]. Seismology and Geology, 2008, 30(4): 895-905 (in Chinese). [2] Roeloffs E A. Hydrologic precursors to earthquakes: A review[J]. Pure and Applied Geophysics, 1988, 126: 177-209. [3] 孙小龙. 地下水动态变化与地震活动的关系研究[D]. 北京: 中国地质大学(北京), 2016. SUN Xiao-long. Study on the relationship between dynamic changes of groundwater and seismic activity[D]. Beijing: China University of Geosciences (Beijing), 2016 (in Chinese). [4] 黄辅琼, 迟恭财, 徐桂明, 等. 大陆地下流体对台湾南投7.6级地震的响应研究[J]. 地震, 2000, 20(S1): 119-125. HUANG Fu-qiong, CHI Gong-cai, XU Gui-ming, et al. Research on the response anomalies of subsurface fluid in mainland monitoring network to the Nantou earthquake with MS7.6[J]. Earthquake, 2000, 20(S1): 119-125 (in Chinese). [5] 付虹, 刘丽芳, 王世芹, 等. 地方震及近震地下水同震震后效应研究[J]. 地震, 2002, 22(4): 55-66. FU Hong, LIU Li-fang, WANG Shi-qin, et al. Research on coseismic and post seismic effect of ground water for the local and near earthquake[J]. Earthquake, 2002, 22(4): 55-66 (in Chinese). [6] 杨竹转. 地震波引起的井水位水温同震变化及其机理研究[D]. 北京: 中国地震局地质研究所, 2011. YANG Zhu-zhuan. Coseismic variations of well water level and temperature caused by seismic waves and their generating mechanisms[D]. Beijing: Institute of Geology, China Earthquake Administration, 2011 (in Chinese). [7] 杨斐, 张彬, 杨选辉, 等. 汶川8.0级和日本9.0级地震时甘肃境内井水位、 井水温同震效应对比分析[J]. 中国地震, 2013, 29(3): 377-385. YANG Fei, ZHANG Bin, YANG Xuan-hui, et al. Analysis on co-seismic responses of well water level and water temperature in Ganshu Province to the Wenchuan MS8.0 earthquake and the Japan MS9.0 earthquake[J]. Earthquake Research in China, 2013, 29(3): 377-385 (in Chinese). [8] 张彬, 刘耀炜, 杨选辉. 中国大陆井水温对汶川8.0级、 玉树7.1级、 芦山7.0级和岷县6.6级地震响应特征的对比研究[J]. 地震工程学报, 2013, 35(3): 535-541. ZHANG Bin, LIU Yao-wei, YANG Xuan-hui. Contrastive study on co-seismic response characteristics of well water temperature in Wenchuan (M8.0), Yushu (M7.1), Lushan (M7.0) and Minxian (M6.6) earthquakes[J]. China Earthquake Engineering Journal, 2013, 35(3): 535-541 (in Chinese). [9] 颜玉聪, 周晓成, 李静超, 等. 2020年新疆于田MS6.4地震温泉水文地球化学异常特征研究[J]. 地震, 2021, 41(2): 113-128. YAN Yu-cong, ZHOU Xiao-cheng, LI Jing-chao, et al. Hydrogeochemical anomaly characteristics of hot springs around the 2020 Yutian MS6.4 earthquake, Xinjiang[J]. Earthquake, 2021, 41(2): 113-128 (in Chinese). [10] 董博, 纪春玲, 周安聘, 等. 河北无极井同震响应特征分析[J]. 地震工程学报, 2021, 43(5): 1077-1086. DONG Bo, JI Chun-ling, ZHOU An-pin, et al. Co-seismic response characteristics of Wuji well in Hebei Province[J]. China Earthquake Engineering Journal, 2021, 43(5): 1077-1086 (in Chinese). [11] 陈玮, 张丽芬, 张卫华, 等. 仙女山断裂带地下流体观测井水位同震响应对比分析[J]. 大地测量与地球动力学, 2020, 40(1): 104-110. CHEN Wei, ZHANG Li-fen, ZHANG Wei-hua, et al. Analysis on comparisons of co-seismic response of underground water along the Xiannüshan fault zone[J]. Journal of Geodesy and Geodynamics, 2020, 40(1): 104-110 (in Chinese). [12] 周志华, 黎明晓, 马玉川. 芦山MS7.0地震引起的水位同震响应特征分析[J]. 四川地震, 2014(2): 20-25. ZHOU Zhi-hua, LI Ming-xiao, MA Yu-chuan. Co-seismic response characters of well water level changes caused by the MS7.0 Lushan earthquake[J]. Earthquake Research in Sichuan, 2014(2): 20-25 (in Chinese). [13] Chia Y, Wang Y S, Chiu J J, et al. Changes of groundwater level due to the 1999 Chi-Chi earthquake in the Choshui River alluvial fan in Taiwan[J]. Bulletin of the Seismological Society of America, 2001, 91(5): 1062-1068. [14] Jónsson S, Segall P, Pedersen R, et al. Post-earthquake ground movements correlated to pore-pressure transients[J]. Nature, 2003, 424(6945): 179-183. [15] 史浙明. 地下水位同震响应特征及机理研究[D]. 北京: 中国地质大学(北京), 2015. SHI Zhe-ming. Characteristic and mechanism of co-seismic hydrological response induced by earthquakes[D]. Beijing: China University of Geosciences (Beijing), 2015 (in Chinese). [16] 刘凯, 张辉, 张军, 等. 山东省井水位对几次大地震同震响应的比较分析[J]. 地震学报, 2019, 41(1): 69-79. LIU Kai, ZHANG Hui, ZHANG Jun, et al. Comparative analysis on coseismic response of water level in Shandong Province to several major earthquakes[J]. Acta Seismologica Sinica, 2019, 41(1): 69-79 (in Chinese). [17] 向阳, 孙小龙, 杨朋涛, 等. 2019年长宁M6.0和2018年兴文M5.7地震引起的井水位同震响应对比分析[J]. 地震, 2020, 40(2): 155-165. XIANG Yang, SUN Xiao-long, YANG Peng-tao, et al. Comparative analysis of coseismic well water level response caused by 2019 Changning M6.0 and 2018 Xingwen M5.7 earthquakes[J]. Earthquake, 2020, 40(2): 155-165 (in Chinese). [18] 巩浩波, 李光科, 李翠平, 等. 西南地区地震观测井泉水温动态特征研究[J]. 地球物理学进展, 2021, 36(4): 1393-1403. GONG Hao-bo, LI Guang-ke, LI Cui-ping, et al. Research on dynamic characteristics of water temperature in wells and springs for seismic observation in Southwest China[J]. Progress in Geophysics, 2021, 36(4): 1393-1403 (in Chinese). [19] 中国地震局. 地震观测仪器进网技术要求(DB/T 32.1—2020)[S]. 北京: 中国地震局, 2020. China Earthquake Administration. Technical requirements of instruments in network for earthquake monitoring (DB/T 32.1—2020)[S]. Beijing: China Earthquake Administration, 2020 (in Chinese). [20] 梁皓, 戴丹青, 杨志高, 等. 2022年6月1日四川芦山6.1级地震应急产品及震源参数初步分析[J]. 中国地震, 2022, 38(2): 360-369. LIANG Hao, DAI Dan-qing, YANG Zhi-gao, et al. Preliminary analysis of emergency production and source parameters of the M6.1 earthquake on June 01, 2022 in Lushan, Sichuan Province[J]. Earthquake Research in China, 2022, 38(2): 360-369 (in Chinese). [21] 张建勇, 戴丹青, 杨志高, 等. 2022年6月10日四川马尔康6.0级地震应急产品及震源参数初步分析[J]. 中国地震, 2022, 38(2): 370-382. ZHANG Jian-yong, DAI Dan-qing, YANG Zhi-gao, et al. Preliminary analysis of emergency production and source parameters of the M6.0 earthquake on June 10, 2022 in Maerkang city, Sichuan Province[J]. Earthquake Research in China, 2022, 38(2): 370-382 (in Chinese). [22] 冉喜阳, 朱航, 龙锋, 等. 2022年四川泸定MS6.8地震前后库仑应力变化分析[J]. 四川地震, 2022(4): 15-20. RAN Xi-yang, ZHU Hang, LONG Feng, et al. Analysis on Coulomb stress changes pre-and-after the 2022 Luding MS6.8 earthquake[J]. Earthquake Research in Sichuan, 2022(4): 15-20 (in Chinese). [23] 薛红盼, 张乐, 陆丽娜, 等. 夏垫断裂带地震地下流体的同震响应研究[J]. 地震, 2020, 40(1): 184-202. XUE Hong-pan, ZHANG Le, LU Li-na, et al. Study on the coseismic response of seismic underground fluid in Xiadian fault zone[J]. Earthquake, 2020, 40(1): 184-202 (in Chinese). [24] 周志华, 黄辅琼, 马玉川. 中国大陆井水位观测网对甘肃岷县漳县6.6级地震同震响应特征分析[J]. 地震工程学报, 2013, 35(3): 529-534. ZHOU Zhi-hua, HUANG Fu-qiong, MA Yu-chuan. Coseismic changes of water level caused by the Mianxian-Zhangxian MS6.6 earthquake[J]. China Earthquake Engineering Journal, 2013, 35(3): 529-534 (in Chinese). [25] Yan R, Wang G, Shi Z. Sensitivity of hydraulic properties to dynamic strain within a fault damage zone[J]. Journal of Hydrology, 2016, 543: 721-728. [26] 丁风和, 车用太, 刘耀炜, 等. 地震观测井地下水埋藏类型判定方法及依据[J]. 地震研究, 2022, 45(2): 284-289. DING Feng-he, CHE Yong-tai, LIU Yao-wei, et al. The method and basis of judging the groundwater type of the seismic observational well[J]. Journal of Seismological Research, 2022, 45(2): 284-289 (in Chinese). [27] 张卉. 井-含水层系统对周期性荷载的响应及受地震影响的研究[D]. 北京: 中国地质大学(北京), 2021. ZHANG Hui. The response of well-aquifer system to periodic loadings and earthquakes[D]. Beijing: China University of Geosciences (Beijing), 2021 (in Chinese). [28] Okada Y. Surface deformation due to shear and tensile faults in a half-space[J]. Bulletin of the Seismological Society of America, 1985, 75(4): 1135-1154. [29] Kitagawa Y, Koizumi N, Takahashi M, et al. Changes in groundwater levels or pressures associated with the 2004 earthquake off the west coast of northern Sumatra (M9.0)[J]. Earth, Planets and Space, 2006, 58(2): 173-179. [30] 赵可新, 兰双双, 谷洪彪, 等. 基于井水位潮汐响应探讨含水层的水力特征及其变化[J]. 南水北调与水利科技(中英文), 2022, 20(4): 802-813. ZHAO Ke-xin, LAN Shuang-shuang, GU Hong-biao, et al. Discussion on hydraulic characteristics and changes of aquifer based on tidal response of well water level[J]. South-to-North Water Transfers and Water Science & Technology, 2022, 20(4): 802-813 (in Chinese). [31] Shi Y, Liao X, Zhang D, et al. Seismic waves could decrease the permeability of the shallow crust[J]. Geophysical Research Letters, 2019, 46(12): 6371-6377. [32] King C Y, Azuma S, Igarashi G, et al. Earthquake-related water-level changes at 16 closely clustered wells in Tono, central Japan[J]. Journal of Geophysical Research: Solid Earth, 1999, 104(B6): 13073-13082. [33] 宋洋. 基于井水位同震响应监测井效能评价体系研究以华北地块区为例[D]. 哈尔滨: 中国地震局工程力学研究所, 2017. SONG Yang. Study on monitoring wells effectiveness evaluation system based on co-seismic response of well water level: A case study of North China Block region[D]. Harbin: Institute of Engineering Mechanics, China Earthquake Administration, 2017 (in Chinese). [34] Shi Z, Wang G, Wang C, et al. Comparison of hydrological responses to the Wenchuan and Lushan earthquakes[J]. Earth and Planetary Science Letters, 2014, 391: 193-200. [35] Tamura Y, Sato T, Ooe M, et al. A procedure for tidal analysis with a Bayesian information criterion[J]. Geophysical Journal International, 1991, 104(3): 507-516. [36] 单维锋, 李军, 石云. Baytap-G潮汐分析辅助软件的设计与实现[J]. 大地测量与地球动力学, 2017, 37(6): 644-646. SHAN Wei-feng, LI Jun, SHI Yun. Design and implementation of Baytap-G tide analysis accessional software[J]. Journal of Geodesy and Geodynamics, 2017, 37(6): 644-646 (in Chinese). [37] 廖丽霞, 秦双龙, 陈昌泳. 不同采样率水位同震响应能力及其特征分析[J]. 地震地磁观测与研究, 2013, 34(3/4): 150-155. LIAO Li-xia, QIN Shuang-long, CHEN Chang-yong. Comparison of the ability for recording coseismic response using water level of different sampling ratio[J]. Seismological and Geomagnetic Observation and Research, 2013, 34(3/4): 150-155 (in Chinese). [38] 廖丽霞, 陈昌泳, 倪晓寅, 等. 不同型号仪器水位记震能力对比分析[J]. 地震研究, 2009, 32(2): 137-144. LIAO Li-xia, CHEN Chang-yong, NI Xiao-yin, et al. Comparison of the ability for recording earthquakes using water level of different models instruments[J]. Journal of Seismological Research, 2009, 32(2): 137-144 (in Chinese). [39] Sun X, Wang G, Yang X. Coseismic response of water level in Changping well, China, to the MW9.0 Tohoku earthquake[J]. Journal of Hydrology, 2015, 531: 1028-1039. [40] 段胜朝, 张山元, 番绍辉, 等. 2021年漾濞MS6.4地震云南数字化井水位同震响应特征分析[J]. 地震地磁观测与研究, 2022, 43(4): 131-139. DUAN Sheng-chao, ZHANG Shan-yuan, FAN Shao-hui, et al. Analysis of co-seismic response characteristics of digital well water level caused by 2021 Yangbi MS6.4 earthquake in Yunnan Province[J]. Seismological and Geomagnetic Observation and Research, 2022, 43(4): 131-139 (in Chinese). |