[1] Schorlemmer D, Werner M J, Marzocchi W, et al. The collaboratory for the study of earthquake predictability: achievements and priorities[J]. Seismological Research Letters, 2018, 89(4): 1305-1313. [2] Reasenberg P A, Jones L M. Earthquake hazard after a mainshock in California[J]. Science, 1989, 243: 1173-1176. [3] Ogata Y. Statistical models for earthquake occurrences and residual analysis for point processes[J]. Journal of the American Statistical Association, 1988, 83(401): 9-27. [4] Iwata T. Low detection capability of global earthquakes after the occurrence of large earthquakes: Investigation of the Harvard CMT catalogue[J]. Geophysical Journal International, 2008, 174(3): 849-856. [5] Ogata Y, Katsura K. Analysis of temporal and spatial heterogeneity of magnitude frequency distribution inferred from earthquake catalogues[J]. Geophysical Journal International, 1993, 113(3): 727-738. [6] Peng Z G, Vidale J, Houston H. Anomalous early aftershock decay rate of the 2004 MW6.0 Parkfield, California, earthquake[J]. Geophysical Research Letters, 2006, 33: L17307. [7] Peng Z G, Vidale J, Ishii M, et al. Seismicity rate immediately before and after main shock rupture from high-frequency waveforms in Japan[J]. Journal of Geophysical Research, 2007, 112: B03306. [8] Zhuang J C, Ogata Y, Wang T. Data completeness of the Kumamoto earthquake sequence in the JMA catalog and its influence on the estimation of the ETAS parameters[J]. Earth, Planets and Space, 2017, 69(1): 36. [9] Zhuang J C, Wang T, Kiyosugi K. Detection and replenishment of missing data in marked point processes[J]. Statistica Sinica, 2020, 30: 2105-2130. [10] Omi T, Ogata Y, Hirata Y, et al. Forecasting large aftershocks within one day after the main shock[J]. Scientific Reports, 2013, 3: 2218. [11] Omi T, Ogata Y, Shiomi K, et al. Automatic aftershock forecasting: A test using real-time seismicity data in Japan[J]. Bulletin of the Seismological Society of America, 2016, 106(6): 2450-2458. [12] Omi T, Ogata Y, Shiomi K. Implementation of a real-time system for automatic aftershock forecasting in Japan[J]. Seismological Research Letters, 2019, 90(1): 242-250. [13] Bi J M, Jiang C S. Comparison of early aftershock forecasting for the 2008 Wenchuan MS8.0 earthquake[J]. Pure and Applied Geophysics, 2020, 177: 9-25. [14] 蒋长胜, 毕金孟, 王福昌, 等. 利用早期余震预测的Omi-R-J方法对2017年四川九寨沟MS7.0地震的应用研究[J]. 地球物理学报, 2018, 61(5): 2099-2110. JIANG Chang-sheng, BI Jin-meng, WANG Fu-chang, et al. Application of the Omi-R-J method for forecast of early aftershocks to the 2017 Jiuzhaigou, Sichuan, MS7.0 earthquake[J]. Chinese Journal of Geophysics, 2018, 61(5): 2099-2110 (in Chinese). [15] 毕金孟, 蒋长胜, 马永. 2019年6月17日四川长宁MS6.0地震早期序列参数分析及强余震概率预测[J]. 地震, 2020, 40(2): 140-154. BI Jin-meng, JIANG Chang-sheng, MA Yong. The study on early sequence parameters and probability forecasting of strong aftershocks of Changning MS6.0 earthquake on June 17, 2019, Sichuan Province[J]. Earthquake, 2020, 40(2): 140-154 (in Chinese). [16] Bi J M, Jiang C S. Research on the forecasting strategy of early aftershocks in North China[J]. Annals of Geophysics, 2020, 63(4): SE441. [17] Utsu T. A statistical study on the occurrence of aftershocks[J]. Geophysical Magazine, 1961, 30: 521-605. [18] Nishikawa T, Ide S. Earthquake size distribution in subduction zones linked to slab buoyancy[J]. Nature Geoscience, 2014, 7: 904-908. [19] Wiemer S, Katsumata K. Spatial variability of seismicity parameters in aftershocks zones[J]. Journal of Geophysical Research, 1999, 104(13): 13135-13151. [20] Manzunzu B, Midzi V, Mangongolo A, et al. The aftershock sequence of the 5 August 2014 Orkney earthquake (ML5.5), South Africa[J]. Journal of Seismology, 2017, 21: 1323-1334. [21] Narteau C, Shebalin P, Holschneider M. Loading rates in California inferred from aftershocks[J]. Nonlinear Processes in Geophysics, 2008, 15: 245-263. [22] Narteau C, Byrdina S, Shebalin P, et al. Common dependence on stress for the two fundamental laws of statistical seismology[J]. Nature, 2009, 462: 642-645. [23] Lippiello E, Giacco F, Marzocchi W, et al. Mechanical origin of aftershocks[J]. Scientific Reports, 2015, 5: 15560. [24] Hatano T, Narteau C, Shebalin P. Common dependence on stress for the statistics of granular avalanches and earthquakes[J]. Scientific Reports, 2015, 5: 12280. [25] Smirnov V B, Ponomarev A V, Stanchits S A, et al. Laboratory modeling of aftershock sequences: stress dependences of the Omori and Gutenberg-Richter parameters[J]. Izvestiya, Physics of the Solid Earth, 2019, 55(1): 124-137. [26] Utsu T, Ogata Y, Matsu’ura R S. The centenary of the Omori formula for a decay law of aftershock activity[J]. Journal of Physics the Earth, 1995, 43(1): 1-33. [27] Rodkin M V, Tikhonov I N. The typical seismic behavior in the vicinity of a large earthquake[J]. Physics and Chemistry of the Earth, 2016, 95: 73-84. [28] Mogi K. Study of elastic shocks caused by the fracture of heterogeneous materials and its relation to earthquake phenomena[J]. Bulletin of the Earthquake Research Institute, 1962, 40: 125-173. [29] Kisslinger C, Jones L M. Properties of aftershocks sequences in southern California[J]. Journal of Geophysical Research, 1991, 961(B7): 11947-11958. [30] Bohnenstiehl D R, Tolstoy M, Dziak R P, et al. Aftershock sequences in the mid-ocean ridge environment: an analysis using hydroacoustic data[J]. Tectonophysics, 2002, 354(1-2): 49-70. [31] Omori F. On the aftershocks of earthquake[J]. Journal of the College of Science, Imperial University of Tokyo, 1894, 7: 111-200. [32] Reasenberg P A, Jones L M. Earthquake aftershocks: update[J]. Science, 1994, 265(5176): 1251-1252. [33] Gutenberg B, Richter C F. Frequency of earthquakes in California[J]. Bulletin of the Seismological Society of America, 1944, 34(4): 185-188. [34] Shebalin P, Narteau C. Depth dependent stress revealed by aftershocks[J]. Nature Communications, 2017, 8: 1317. [35] Enescu B, Enescu D, Ito K. Values of b and p: their variations and relation to physical processes for earthquakes in Japan and Romania[J]. Romanian Journal of Physics, 2011, 56(3-4): 590-608. [36] Ogata Y. Estimation of parameters in the modified Omori Formula for aftershock frequencies by the maximum likelihood procedure[J]. Journal of Physics of the Earth, 1983, 31(2): 115-124. [37] Akaike H. Likelihood and the Bayes procedure[J]. Trabajos de Estadisticay de Investigacion Operativa, 1980, 31(1): 143-166. [38] 苏有锦, 李忠华, 赵小艳, 等. 全球7级以上地震序列研究[M]. 昆明: 云南大学出版社, 2014. SU You-jin, LI Zhong-hua, ZHAO Xiao-yan, et al. Study on the global earthquake sequence with M≥7[M]. Kunming: Yunnan University Press, 2014 (in Chinese). [39] Gardner J K, Knopoff L. Is the sequence of earthquakes in Southern California with aftershocks removed, Poissonian?[J]. Bulletin of the Seismological Society of America, 1974, 64(5): 1363-1367. [40] 毕金孟, 蒋长胜. 晋冀蒙交界地区余震短期发生率的预测效能评估和预测策略研究[J]. 地球物理学进展, 2017, 32(1): 8-17. BI Jin-meng, JIANG Chang-sheng. Evaluation on the forecasting effectiveness of short-term aftershock occurrence rate and forecasting strategies at the junction of Shanxi, Hebei and Inner Mongolia[J]. Progress in Geophysics, 2017, 32(1): 8-17 (in Chinese). [41] 毕金孟, 蒋长胜. 华北地区地震序列参数的分布特征[J]. 地球物理学报, 2019, 62(11): 4300-4312. BI Jin-meng, JIANG Chang-sheng. Distribution characteristics of earthquake sequence parameters in North China[J]. Chinese Journal of Geophysics, 2019, 62(11): 4300-4312 (in Chinese). [42] Huang Q H. Search for reliable precursors: A case study of the seismic quiescence of the 2000 western Tottori prefecture earthquake[J]. Journal of Geophysical Research, 2006, 111(B4): B04301. [43] 蒋长胜, 吴忠良. 2010年玉树MS7.1地震前的中长期加速矩释放(AMR)[J]. 地球物理学报, 2011, 54(6): 1501-1510. JIANG Chang-sheng, WU Zhong-liang. Intermediate-term medium-range Accelerating Moment Release (AMR) priori to the 2010 Yushu MS7.1 earthquake[J]. Chinese Journal of Geophysics, 2011, 54(6): 1501-1510 (in Chinese). [44] Hardebeck J L, Llenos A L, Michael A J, et al. Updated California aftershock parameters[J]. Seismological Research Letters, 2018, 90(1): 262-270. [45] Lolli B, Gasperini P. Aftershocks hazard in Italy Part I: Estimation of time-magnitude distribution model parameters and computation of probabilities of occurrence[J]. Journal of Seismology, 2003, 7(2): 235-257. [46] Ogata Y, Katsura K, Tsuruoka H, et al. Exploring magnitude forecasting of the next earthquake[J]. Seismological Research Letters, 2018, 89(4): 1298-1304. [47] Avila-Barrientos L, Zúñiga F R, Rodríguez-Pérez Q, et al. Variation of b and p values from aftershocks sequences along the Mexican subduction zone and their relation to plate characteristics[J]. Journal of South American Earth Sciences, 2015, 63: 162-171. [48] Montuori C, Falcone G, Murru M, et al. Crustal heterogeneity highlighted by spatial b-value map in the Wellington region of New Zealand[J]. Geophysical Journal International, 2010, 183(1): 451-460. [49] Singh C, Singh S. Imaging b-value variation beneath the Pamir-Hindu Kush region[J]. Bulletin of the Seismological Society of America, 2015, 105(2A): 808-815. [50] 傅征祥, 刘桂萍, 邵志刚, 等. 板块构造和地震活动性[M]. 北京: 地震出版社, 2009. FU Zheng-xiang, LIU Gui-ping, SHAO Zhi-gang, et al. Plate tectonics and seismicity[M]. Beijing: Seismological Press, 2009 (in Chinese). [51] Matsu′ura R S. Median values of parameters in the modified Omori formula: for mainshock in and near Japan of M6.0 and large (1966—1991)[C]. Japan Earth Planetary Science Joint Meeting, Tokyo, 1993, F21-P101. |