[1] 韩玲. 地震灾害遥感特征分析与信息提取技术研究[D]. 成都: 成都理工大学, 2011. HAN Ling. Study on technologies of remote sensing feature analysis and information extraction of earthquake disaster[D]. Chengdu: Chengdu University of Technology, 2011 (in Chinese). [2] 陆超. 基于WorldView-2影像的面向对象信息提取技术研究[D]. 杭州: 浙江大学, 2012. LU Chao. Research on information extraction of WorldView-2 imagery with object-oriented technology[D]. Hangzhou: Zhejiang University, 2012 (in Chinese). [3] 田卫方. 基于高分辨率遥感影像的震后道路损毁识别研究以鲁甸地震为例[D]. 北京: 北京交通大学, 2015. TIAN Wei-fang. Research on recognition of earthquake damaged road based on high resolution remote sensing imagery: Taking Ludian earthquake for an example[D]. Beijing: Beijing Jiaotong University, 2015 (in Chinese). [4] 李强, 张景发. 道路震害遥感提取方法现状与应急应用展望[J]. 地震, 2017, 37(4): 80-92. LI Qiang, ZHANG Jing-fa. Extraction method of road seismic damage from multi-source remote sensing images and application prospect for earthquake emergency[J]. Earthquake, 2017, 37(4): 80-92 (in Chinese). [5] 谢翠容, 代侦勇, 杨洋. 改进型算法的高分辨率遥感影响道路灾害信息提取[J]. 测绘与空间地理信息, 2016, 39(9): 105-108. XIE Cui-rong, DAI Zhen-yong, YANG Yang. The extraction algorithm of disaster information based on high resolution remote sensing image[J]. Geomatics & Spatial Information Technology, 2016, 39(9): 105-108 (in Chinese). [6] 王岩, 王晓青, 窦爱霞. 面向对象遥感分类方法在震害快速提取中的应用[J]. 国际地震动态, 2012(6): 288. WANG Yan, WANG Xiao-qing, DOU Ai-xia. Object-oriented remote sensing data classification method application in earthquake damage rapid extraction[J]. Recent Developments in World Seismology, 2012(6): 288 (in Chinese). [7] 陈世荣, 马海建, 范一大, 等. 基于高分辨率遥感影像的汶川地震道路损毁评估[J]. 遥感学报, 2008, 12(6): 949-955. CHEN Shi-rong, MA Hai-jian, FAN Yi-da, et al. Road damage assessment from high resolution satellite remote sensing imagery in Wenchuan earthquake[J]. Journal of Remote Sensing, 2008, 12(6): 949-955 (in Chinese). [8] Sato H P, Harp E L. Interpretation of earthquake-induced landslides triggered by the 12 May 2008, M7.9 Wenchuan earthquake in the Beichuan area, Sichuan Province, China using satellite imagery and Google Earth[J]. Landslides, 2009, 6: 153-159. [9] Lacroix P, Zavala B, Berthier E, et al. Supervised method of landslide inventory using panchromatic SPORT5 images and application to the earthquake-triggered landslides of Pisco[J]. Remote Sensing, 2013(5): 2590-2616. [10] 王艳萍, 姜纪沂, 林玲玲. 高分辨率遥感影像中道路震害信息的识别方法[J]. 计算机工程与应用, 2012, 48(3): 173-175+227. WANG Yan-ping, JIANG Ji-yi, LIN Ling-ling. Road damage detection from high resolution remote sensing[J]. Computer Engineering and Applications, 2012, 48(3): 173-175+227 (in Chinese). [11] 马海建, 陆楠, 李晓璇. 基于边线的遥感影像道路震害快速提取方法研究[J]. 地震, 2013, 33(2): 71-78. MA Hai-jian, LU Nan, LI Xiao-xuan. Rapid extraction of earthquake road damages based on sidelines from remote sensing images[J]. Earthquake, 2013, 33(2): 71-78 (in Chinese). [12] 胡岩峰, 刘波, 李峰, 等. 一种基于统计分析的图像变化检测方法[J]. 光子学报, 2005, 34(1): 146-149. HU Yan-feng, LIU Bo, LI Feng, et al. An image change detection method using statistical analysis[J]. Acta Photonica Sinica, 2005, 34(1): 146-149 (in Chinese). [13] 钟家强, 王润生. 一种基于线特征的道路网变化检测算法[J]. 遥感学报, 2007, 11(1): 27-32. ZHONG Jia-qiang, WANG Run-sheng. A road network change detection algorithm based on linear feature[J]. Journal of Remote Sensing, 2007, 11(1): 27-32 (in Chinese). [14] 刘明众, 张景发, 李成龙, 等. 高分辨率遥感影像道路震害的快速提取[J]. 地震, 2013, 33(2): 79-86. LIU Ming-zhong, ZHANG Jing-fa, LI Cheng-long, et al. Rapid extraction of road damages from high resolution remote sensing images[J]. Earthquake, 2013, 33(2): 79-86 (in Chinese). [15] Mohan R. Deep deconvolutional networks for scene parsing[J]. Computer Science, 2014(1): 1-8. [16] 韩洁, 李盛阳, 张涛. 基于深度学习的遥感影像城市扩展方法研究[J]. 载人航天, 2017, 23(3): 414-418+426. HAN Jie, LI Sheng-yang, ZHANG Tao. Research on urban expansion method based on deep learning of remote sensing Image[J]. Manned Space Flight, 2017, 23(3): 414-418+426 (in Chinese). [17] Cheng G, Yang C Y, Yao X W, et al. When deep learning meets metric learning: Remote sensing Image scene classification via learning discriminative CNNs[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(5): 2811-2821. [18] Zou Q, Ni L H, Zhang T, et al. Deep learning based feature selection for remote sensing scene classification[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(11): 2321-2325. [19] 雒培磊, 李国庆, 曾怡. 一种改进的基于深度学习的遥感影像拼接方法[J]. 计算机工程与应用, 2017, 53(20): 180-186. LUO Pei-lei, LI Guo-qing, ZENG Yi. Modified approach to remote sensing image mosaic based on deep learning[J]. Computer Engineering and Applications, 2017, 53(20): 180-186 (in Chinese). [20] Wang J, Song J W, Chen M Q, et al. Road network extraction: a neural-dynamic framework based on deep learning and a finite state machine[J]. International Journal of Remote Sensing, 2015, 36(12): 3144-3169. [21] 王港, 陈金勇, 高峰, 等. 基于深度学习的遥感影像基础设施目标检测研究[J]. 无线电工程, 2018(3): 219-224. WANG Gang, CHEN Jin-yong, GAO Feng, et al. Research on the infrastructure target detection of remote sensing Image based on deep learning[J]. Radio Engineering, 2018(3): 219-224 (in Chinese). [22] 方茂青. 基于Deeplabv3+的遥感图像城市道路分割算法研究[D]. 武汉: 华中科技大学, 2019. FANG Mao-qing. Research on urban road segmentation algorithm based on Deeplabv3+ remote sensing image[D]. Wuhan: Huazhong University of Science and Technology, 2019 (in Chinese). [23] Chen L C, Zhu Y K, George P, et al. Encoder-Decoder with atrous separable convolution for semantic image segmentation[Z]. 2018-8-22. http://link.springer.com/conference/eccv. [24] Achanta R, Shaji A, Smith K, et al. SLIC superpixels compared to state-of-the-art superpixel methods[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2012, 34(11): 2274-2282. [25] Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation[C]. IEEE Conference on Computer Vision and Pattern Recognition, IEEE Computer Society, 2015: 3431-3440. |