欢迎访问《地震》,

地震 ›› 2022, Vol. 42 ›› Issue (2): 171-189.doi: 10.12196/j.issn.1000-3274.2022.02.014

• • 上一篇    下一篇

基于Deeplab V3+模型的高分辨率遥感影像道路损毁信息提取

陈丹丹, 窦爱霞, 王鑫   

  1. 中国地震局地震预测研究所, 北京 100036
  • 收稿日期:2020-06-01 修回日期:2021-02-03 出版日期:2022-04-30 发布日期:2023-02-17
  • 通讯作者: 窦爱霞, 副研究员。 E-mail: axdothy@163.com
  • 作者简介:陈丹丹(1991-), 女, 河南郑州人, 在读硕士研究生, 主要从事遥感技术震害提取研究。
  • 基金资助:
    中国地震局地震预测研究所基本科研业务费专项(CEAIEF2022050505; 2018IEF010106); 中国地震局地震预测研究所新疆项目(30028747)

Road Damage Information Extraction from High-Resolution Remote Sensing Images Based on Deeplab V3+ Network Model

CHEN Dan-dan, DOU Ai-xia, WANG Xin   

  1. Institute of Earthquake Forecasting, China Earthquake Administration, Beijing 100036, China
  • Received:2020-06-01 Revised:2021-02-03 Online:2022-04-30 Published:2023-02-17

摘要: 破坏性地震发生后, 道路是抗震救灾的“生命线”, 能够第一时间获取震后的道路损毁信息, 就能在很大程度上减少生命和财产的损失。 针对目前震害提取方法精度低、 人工参与多及用时较长的问题, 提出了基于Deeplab V3+深度学习网络模型的震后单时相高分辨率遥感影像道路震害信息提取方法。 该方法充分挖掘了多尺度的上下文信息, 逐步重构空间信息以便更好地捕捉道路边界, 从而提高道路震害信息提取精度。 以2013年四川省雅安市芦山7.0级地震为例, 通过选取山区、 平原以及城市内部不同等级的道路高分影像样本, 创建模型训练的样本集。 为了进一步验证Deeplab V3+模型的效果, 选择目前较为主流的FCN模型与Deeplab V3+模型进行对比。 经多次训练和精度分析, 综合考虑模型精度和训练量、 训练次数的关系, 最终选择7528对训练样本集、 100000训练次数和总精度达到95%的Deeplab V3+模型作为最佳模型。 然后, 将训练后的最佳Deeplab V3+模型应用到提取震后无人机道路损毁信息。 将人工目视解译的结果作为模型提取精度评价的标准, 对比分析后Deeplab V3+模型的震后高分遥感影像道路损毁信息提取精度可达88%。 结果表明, 基于Deeplab V3+模型的道路震害提取方法具有较高的准确率和普适性, 可在震后道路损毁信息的快速提取中推广应用。

关键词: Deeplab V3+, 高分遥感影像, 道路, 2013年芦山7.0级地震

Abstract: After the earthquake, the road is the “lifeline” of earthquake relief. The first time to obtain the road damage information after the earthquake is to minimize the loss of life and property. Aiming at the problems of current seismic damage extraction methods with low accuracy, multiple manual participation and long time consumption, a method for extracting road seismic damage information from single-phase high-resolution remote sensing images based on Deeplab V3+ deep learning network model is proposed. This method fully excavates multi-scale contextual content information, and gradually reconstructs spatial information to better capture road boundaries, thereby improving the accuracy of road earthquake damage information extraction. In this paper, taking the 2013 Lushan M7.0 earthquake in Ya' an of Sichuan Province as an example, by selecting different grades of road high-scoring image samples in mountains, plains, and cities, creating a sample set of model training. In order to further verify the effect of the Deeplab V3+ model, the current more mainstream FCN model is selected for comparison with the Deeplab V3+ model. After multiple training and accuracy analysis, considering the relationship between model accuracy, training quantity and training times. Deeplab V3+ model with 7528 training samples, 100000 training times and 95% total accuracy was selected as the best model. Then, the best Deeplab V3+ model after training is applied to extract post-earthquake road damage information. The results of manual visual interpretation are used as the standard for evaluating the accuracy of model extraction. After comparative analysis, the accuracy of the road information extraction of post-earthquake high-resolution remote sensing images of Deeplab V3+ model can reach 88%. The results show that the method based on Deeplab V3+ model has the highest accuracy and universality, and can be widely used in the rapid extraction of post-earthquake damaged road information.

Key words: Deeplab V3+, High-resolution remote sensing image, Road, the 2013 Lushan M7.0 earthquake

中图分类号: