[1] 陈长云. 巴颜喀拉地块东部及其邻区块体运动及块体边界带形变特征[D]. 北京: 中国地震局地质研究所, 2015. CHEN Chang-yun. Block motion and deformation of boundary faults of active blocks in eastern Bayan Har block and its adjacent regions[D]. Beijing: Institute of Geology, China Earthquake Administration, 2015 (in Chinese). [2] 张军龙, 任金卫, 付俊东, 等. 东昆仑断裂带东部塔藏断裂地震地表破裂特征及其构造意义[J]. 地震, 2012, 32(1): 1-16. ZHANG Jun-long, REN Jin-wei, FU Jun-dong, et al. Earthquake rupture features and tectonic significance of the Tazang fault in the eastern part of the East Kunlun fault zones[J]. Earthquake, 2012, 32(1): 1-16 (in Chinese). [3] 任俊杰, 徐锡伟, 张世民, 等. 东昆仑断裂带东端的构造转换与2017年九寨沟MS7.0地震孕震机制[J]. 地球物理学报, 2017, 60(10): 4027-4045. REN Jun-jie, XU Xi-wei, ZHANG Shi-min, et al. Tectonic transformation at the eastern termination of the Eastern Kunlun fault zone and seismogenic mechanism of the 8 August 2017 Jiuzhaigou MS7.0 earthquake[J]. Chinese Journal of Geophysics, 2017, 60(10): 4027-4045 (in Chinese). [4] 徐锡伟, 陈桂华, 王启欣, 等. 九寨沟地震发震断层属性及青藏高原东南缘现今应变状态讨论[J]. 地球物理学报, 2017, 60(10): 4018-4026. XU Xi-wei, CHEN Gui-hua, WANG Qi-xin et al. Discussion on seismogenic structure of Jiuzhaigou earthquake and its implication for current strain state in the southeastern Qinghai-Tibet Plateau[J]. Chinese Journal of Geophysics, 2017, 60(10): 4018-4026 (in Chinese). [5] 唐荣昌, 陆联康. 1976年松潘、 平武地震的地震地质特征[J]. 地震地质, 1981, 3(2): 41-47. TANG Rong-chang, LU Lian-kang. On the seismogeological characteristics of 1976 Songpan-Pingwu earthquakes[J]. Seismology and Geology, 1981, 3(2): 41-47 (in Chinese). [6] 单新建, 屈春燕, 龚文瑜, 等. 2017年8月8日四川九寨沟7.0级地震InSAR同震形变场及断层滑动分布反演[J]. 地球物理学报, 2017, 60(12): 4527-4536. SHAN Xin-jian, QU Chun-yan, GONG Wen-yu, et al. Coseismic deformation field of the Jiuzhaigou MS7.0 earthquake from Sentinel-1A InSAR data and fault slip inversion[J]. Chinese Journal of Geophysics, 2017, 60(12): 4527-4536 (in Chinese). [7] 季灵运, 刘传金, 徐晶等. 九寨沟MS7.0地震的InSAR观测及发震构造分析[J]. 地球物理学报, 2017, 60(10): 4069-4082. JI Ling-yun, LIU Chuan-jin, XU Jing, et al. InSAR observation and inversion of the seismogenic fault for the 2017 Jiuzhaigou MS7.0 earthquake in China[J]. Chinese Journal of Geophysics, 2017, 60(10): 4069-4082 (in Chinese). [8] Peng W S, Huang X, Wang Z G, et al. Coseismic deformation and fault inversion of the 2017 Jiuzhaigou MS7.0 earthquake: Constraints from steerable pyramid and InSAR observations[J]. Remote Sensing, 2023, 15(1): 222. [9] 易桂喜, 龙锋, 梁明剑, 等. 2017年8月8日九寨沟MS7.0地震及余震震源机制解与发震构造分析[J]. 地球物理学报, 2017, 60(10): 4083-4097. YI Gui-xi, LONG Feng, LIANG Ming-jian, et al. Focal mechanism solutions and seismogenic structure of the 8 August 2017 MS7.0 Jiuzhaigou earthquake and its aftershocks, northern Sichuan[J]. Chinese Journal of Geophysics, 2017, 60(10): 4083-4097 (in Chinese). [10] 陈威, 乔学军, 刘刚, 等. 基于GNSS与InSAR约束的九寨沟MS7.0地震滑动模型及其库仑应力研究[J]. 地球物理学报, 2018, 61(5): 2122-2132. CHEN Wei, QIAO Xue-jun, LIU Gang, et al. Study on the coseismic slip model and Coulomb stress of the 2017 Jiuzhaigou MS7.0 earthquake constrained by GNSS and InSAR measurements[J]. Chinese Journal of Geophysics, 2018, 61(5): 2122-2132 (in Chinese). [11]Rosen P A, Gurrola E, Sacco G F, et al. The InSAR scientific computing environment[J]. European Conference on Synthetic Aperture Radar, VDE, 2012: 730-733. [12] 肖雁峰, 胡晓斌, 谭凯. 基于InSAR约束的2020年中国西藏定日MW5.7地震同震滑动模型[J]. 地震, 2022, 42(2): 140-148. XIAO Yan-feng, HU Xiao-bin, TAN Kai. Study on the coseismic slip model of the 2020 Dingri MW5.7 earthquake in Xizang, China Constrained by InSAR measurements[J]. Earthquake, 2022, 42(2): 140-148 (in Chinese). [13] Farr T G, Rosen P A, Caro E, et al. The shuttle radar topography mission[J]. Reviews of Geophysics, 2007, 45(2): RG2004. [14] Nie Z S, Wang D J, Jia Z G, et al. Fault model of the 2017 Jiuzhaigou MW6.5 earthquake estimated from coseismic deformation observed using global positioning system and interferometric synthetic aperture radar data[J]. Earth, Planets and Space, 2018, 70(1): 1-12. [15] 彭颖, 许才军, 刘洋. 联合地震位错模型和InSAR数据构建2017年九寨沟MW6.5地震同震三维形变场[J]. 武汉大学学报(信息科学版), 2022, 47(11): 1896-1905+1937. PENG Ying, XU Cai-jun, LIU Yang. Deriving 3D coseismic deformation field of 2017 MW6.5 Jiuzhaigou earthquake with elastic dislocation model and InSAR data[J]. Geomatics and Information Science of Wuhan University, 2022, 47(11): 1896-1905+1937 (in Chinese). [16] 姚鑫, 周振凯, 李凌婧, 等. 2017年四川九寨沟MS7.0地震InSAR同震形变场及发震构造探讨[J]. 地质力学学报, 2017, 23(4): 507-514. YAO Xin, ZHOU Zhen-kai, LI Ling-jing, et al. InSAR Co-seismic deformation of 2017 MS7.0 Jiuzhaigou earthquake and discussion on seismogenic tectonics[J]. Journal of Geomechanics, 2017, 23(4): 507-514 (in Chinese). [17] Goldstein R M, Werner C L. Radar interferogram filtering for geophysical applications[J]. Geophysical Research Letters, 1998, 25(21): 4035-4038. [18] Pepe A, Lanari R. On the extension of the minimum cost flow algorithm for phase unwrapping of multitemporal differential SAR interferograms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(9): 2374-2383. [19] 刘超亚, 董彦芳, 洪顺英, 等. 利用InSAR获取2020年新疆于田MW6.3地震同震形变场与断层滑动分布反演[J]. 地震, 2021, 41(2): 62-79. LIU Chao-ya, DONG Yan-fang, HONG Shun-ying, et al. InSAR coseismic deformation and fault slip distribution inversion of the 2020 Yutian MW6.3 earthquake, Xinjiang[J]. Earthquake, 2021, 41(2): 62-79 (in Chinese). [20] Yu C, Li Z H, Penna N T, et al. Generic atmospheric correction model for interferometric synthetic aperture radar observations[J]. Journal of Geophysical Research: Solid Earth, 2018, 123(10): 9202-9222. [21] Li Q, Tan K, Wang D Z, et al. Joint inversion of GNSS and teleseismic data for the rupture process of the 2017 MW6.5 Jiuzhaigou, China, earthquake[J]. Journal of Seismology, 2018, 22: 805-814. [22] 黄勇, 陈威, 李琦, 等. 基于GPS、 InSAR和强震数据联合反演2017年九寨沟MS7.0地震同震滑动分布[J]. 大地测量与地球动力学, 2020, 40(6): 565-570. HUANG Yong, CHEN Wei, LI Qi, et al. Coseismic slip distribution of the 2017 MS7.0 Jiuzhaigou earthquake from joint inversion of GPS, InSAR and strong motion data[J]. Journal of Geodesy and Geodynamics, 2020, 40(6): 565-570 (in Chinese). [23] Okada Y. Surface deformation due to shear and tensile faults in a half-space[J]. Bulletin of the Seismological Society of America, 1985, 75(4): 1135-1154. [24] Okada Y. Internal deformation due to shear and tensile faults in a half-space[J]. Bulletin of the Seismological Society of America, 1992, 82(2): 1018-1040. [25] 伍吉仓, 宋鑫友, 胡凤鸣, 等. 联合GNSS和InSAR观测位移反演2008年汶川大地震断层位错模型参数[J]. 中国地震, 2020, 36(4): 767-779. WU Ji-cang, SONG Xin-you, HU Feng-ming, et al. Fault slip distribution of 2008 Wenchuan earthquake by jointed coseismic displacements from GPS and InSAR[J]. Earthquake Research in China, 2020, 36(4): 767-779 (in Chinese). [26] 祝杰, 韩宇飞, 王坦, 等. 2017年九寨沟MS7.0地震同震地表三维形变场解算研究[J]. 中国地震, 2022, 38(2): 348-359. ZHU Jie, HAN Yu-fei, WANG Tan, et al. Extraction of the coseismic 3D deformation field of the 2017 Jiuzhaigou MS7.0 earthquake[J]. Earthquake Research in China, 2022, 38(2): 348-359 (in Chinese). [27] Bagnardi M, Hooper A. Inversion of surface deformation data for rapid estimates of source parameters and uncertainties: A Bayesian approach[J]. Geochemistry, Geophysics, Geosystems, 2018, 19(7): 2194-2211. [28] Jónsson S, Zebker H, Segall P, et al. Fault slip distribution of the 1999 MW7.1 Hector Mine, California, earthquake, estimated from satellite radar and GPS measurements[J]. Bulletin of the Seismological Society of America, 2002, 92(4): 1377-1389. [29] Tang X W, Guo R M, Xu J Q, et al. Probing the fault complexity of the 2017 MS7.0 Jiuzhaigou earthquake based on the InSAR data[J]. Remote Sensing, 2021, 13(8): 1573. [30] Zhao D, Qu C, Shan X, et al. InSAR and GPS derived coseismic deformation and fault model of the 2017 MS7.0 Jiuzhaigou earthquake in the Northeast Bayanhar block[J]. Tectonophysics, 2018, 726: 86-99. [31] 申文豪, 李永生, 焦其松, 等. 联合强震记录和InSAR/GPS结果的四川九寨沟7.0级地震震源滑动分布反演及其地震学应用[J]. 地球物理学报, 2019, 62(1): 115-129. SHEN Wen-hao, LI Yong-sheng, JIAO Qi-song, et al. Joint inversion of strong motion and InSAR/GPS data for fault slip distribution of the Jiuzhaigou 7.0 earthquake and its application in seismology[J]. Chinese Journal of Geophysics, 2019, 62(1): 115-129 (in Chinese). [32] Wang R J, Parolai S, Ge M, et al. The 2011 MW9.0 Tohoku earthquake: Comparison of GPS and strong-motion data[J]. Bulletin of the Seismological Society of America, 2013, 103(2B): 1336-1347. [33] 屠泓为, 汪荣江, 刁法启, 等. 运用SDM方法研究2001年昆仑山口西MS8.1地震破裂分布: GPS和InSAR联合反演的结果[J]. 地球物理学报, 2016, 59(6): 2103-2112. TU Hong-wei, WANG Rong-jiang, DIAO Fa-qi, et al. Slip model of the 2001 Kunlun mountain MS8.1 earthquake by SDM: Joint inversion from GPS and InSAR data[J]. Chinese Journal of Geophysics, 2016, 59(6): 2103-2112 (in Chinese). [34] 王阅兵, 甘卫军, 陈为涛, 等. GNSS观测的九寨沟7.0级地震同震位移初步结果[J]. 地球物理学报, 2018, 61(1): 161-170. WANG Yue-bing, GAN Wei-jun, CHEN Wei-tao, et al. Coseismic displacements of the 2017 Jiuzhaigou M7.0 earthquake observed by GNSS: Preliminary results[J]. Chinese Journal of Geophysics, 2018, 61(1): 161-170 (in Chinese). [35] Kirby E, Harkins N, Wang E, et al. Slip rate gradients along the eastern Kunlun fault[J]. Tectonics, 2007, 26(2): TC2010. [36] Ren J, Xu X, Yeats R S, et al. Millennial slip rates of the Tazang fault, the eastern termination of Kunlun fault: Implications for strain partitioning in eastern Tibet[J]. Tectonophysics, 2013, 608: 1180-1200. [37] 付国超. 塔藏断裂东部晚第四纪以来活动性研究[D]. 北京: 中国地震局地震预测研究所, 2017. FU Guo-chao. Late Quaternary activity of eastern part of the Tazang fault[D]. Beijing: Institute of Earthquake Forecasting, China Earthquake Administration, 2017 (in Chinese). [38] 周荣军, 李勇, Alexander L Densmore, 等. 青藏高原东缘活动构造[J]. 矿物岩石, 2006, 26(2): 40-51. ZHOU Rong-jun, LI Yong, Alexander L D, et al. Active tectonics of the eastern margin of the Tibet Plateau[J]. Mineralogy and Petrology, 2006, 26(2): 40-51 (in Chinese). [39] 程佳, 姚生海, 刘杰, 等. 2017年九寨沟地震所受历史地震黏弹性库仑应力作用及其后续对周边断层地震危险性的影响[J]. 地球物理学报, 2018, 61(5): 2133-2151. CHENG Jia, YAO Sheng-hai, LIU Jie, et al. Visoelastic Coulomb stress of historical earthquakes on the 2017 Jiuzhaigou earthquake and the subsequent influence on the seismic hazards of adjacent faults[J]. Chinese Journal of Geophysics, 2018, 61(5): 2133-2151 (in Chinese). [40] 田勤俭, 丁国瑜. 青藏高原东北隅似三联点构造特征[J]. 中国地震, 1998, 14(4): 29-37. TIAN Qin-jian, DING Guo-yu. The tectonic feature of a Quasi-trijunction in the northeastern corner of Qinghai-Xizang Plateau[J]. Earthquake Research in China, 1998, 14(4): 29-37 (in Chinese). [41] 李松林, 赖晓玲. 青藏高原东北缘似三联点构造的初步研究[J]. 大地测量与地球动力学, 2006, 26(2): 10-14. LI Song-lin, LAI Xiao-ling. Preliminary study on Quasi Tri-junction in northeastern margin of Qinghai-Tibet Plateau[J]. Journal of Geodesy and Geodynamics, 2006, 26(2): 10-14 (in Chinese). |