地震 ›› 2025, Vol. 45 ›› Issue (1): 111-129.doi: 10.12196/j.issn.1000-3274.2025.01.008
沈胜意
收稿日期:2024-06-03
接受日期:2024-08-23
发布日期:2025-04-15
作者简介:沈胜意(1993-), 男, 浙江杭州人, 助理工程师, 主要从事地震各向异性研究。 E-mail: ssypanda@outlook.com
基金资助:SHEN Sheng-yi
Received:2024-06-03
Accepted:2024-08-23
Published:2025-04-15
摘要: 华夏块体与江南造山带位于活动性大陆边缘, 其区域岩石圈变形模式对于研究太平洋和菲律宾海板块俯冲欧亚大陆有着重要意义。 SKS波各向异性可以指示上地幔物质变形或流动的方向, 是研究岩石圈深部变形的有效手段。 基于浙江省内23个固定台站的远震波形, 进行剪切波的分裂测量, 分析华夏块体与江南造山带北部不同地块的各向异性特征。 结果显示, 长江中下游成矿带SKS分裂平均快波方向为70.0°, 平均分裂时间0.58 s; 造山带东南部SKS分裂平均快波方向为-60.7°, 分裂时间平均0.89 s; 华夏地块SKS分裂平均快波方向为-65.0°, 分裂时间平均0.90 s。 据此认为, 浙江境内长江中下游成矿带的上地幔沿成矿带平行流动, 华夏地块与江南造山带东南部地幔沿NW—SE至NWW—SEE向流动; 江南造山带与华夏地块的深部边界位于钦杭结合带内, 相较地表的边界江绍断裂靠近扬子地块。
中图分类号:
沈胜意. 华夏块体与江南造山带北部SKS分裂研究[J]. 地震, 2025, 45(1): 111-129.
SHEN Sheng-yi. The Study of the SKS Wave Splitting in the North of Cathaysian Block and Jiangnan Orogenic Belt[J]. EARTHQUAKE, 2025, 45(1): 111-129.
| [1] Wang Y, Fan W, Zhang G, et al. Phanerozoic tectonics of the South China Block: Key observations and controversies[J]. Gondwana Research: International Geoscience Journal, 2013, 23(4): 1273-1305. [2] 王自强, 高林志, 丁孝忠, 等. “江南造山带”变质基底形成的构造环境及演化特征[J]. 地质论评, 2012, 58(3): 401-413. WANG Zi-qiang, GAO Lin-zhi, DING Xiao-zhong, et al. Tectonic environment of the metamorphosed basement in the Jiangnan orogen and its evolutional features[J]. Geological Review, 2012, 58(3): 401-413 (in Chinese). [3] 周涛发, 范裕, 王世伟, 等. 长江中下游成矿带成矿规律和成矿模式[J]. 岩石学报, 2017, 33(11): 3353-3372. ZHOU Tao-fa, FAN Yu, WANG Shi-wei, et al. Metallogenic regularity and metallogenic model of the Middle-Lower Yangtze River valley metallogenic belt[J]. Acta Petrologica Sinica, 2017, 33(11): 3353-3372 (in Chinese). [4] 沈淑敏, 郑芳芳, 刘文英. 中国东南大陆边缘地区构造应力场特征与东海盆地油气运移规律[J]. 地质力学学报, 1989(1): 1-76. SHEN Shu-min, ZHENG Fang-fang, LIU Wen-ying. The tectonic stress field characteristic of the continental margins in southeast China and the migrating laws of oil and gas in the East China Sea Basin[J]. Journal of Geomechanics, 1989(1): 1-76 (in Chinese). [5] 张永谦, 吕庆田, 滕吉文, 等. 长江中下游及邻区的地壳密度结构与深部成矿背景探讨来自重力学的约束[J]. 岩石学报, 2014, 30(4): 931-940. ZHANG Yong-qian, LÜ Qing-tian, TENG Ji-wen, et al. Discussion on the crustal density structure and deep mineralization background in the Middle-Lower Yangtze metallogenic belt and its surrounding areas: Constraints from the gravity inversion[J]. Acta Petrologica Sinica, 2014, 30(4): 931-940 (in Chinese). [6] 李雪垒, 李志伟, 夏鑫, 等. 华南地壳结构与构造边界特征: 来自地震背景噪声和重力联合成像模型的约束[J]. 科学通报, 2023, 68(24): 3221-3236. LI Xue-lei, LI Zhi-wei, XIA Xin, et al. Crustal structure and tectonic boundary characteristics in South China: Constraints from joint tomography of ambient noise and gravity[J]. Chinese Science Bulletin, 2023, 68(24): 3221-3236 (in Chinese). [7] 韩如冰, 杨顶辉, 李秋生, 等. 华南东部密集台阵接收函数成像与深部动力学机制[J]. 中国科学: 地球科学, 2023, 53(6): 1295-1315. HAN Ru-bing, YANG Ding-hui, LI Qiu-sheng, et al. Receiver function imaging of dense seismic array and deep dynamic mechanism beneath the eastern South China[J]. Science China: Earth Sciences, 2023, 53(6): 1295-1315 (in Chinese). [8] Zhang Y Q, Shi D N, Lü Q T, et al. The crustal thickness and composition in the eastern South China Block constrained by receiver functions: Implications for the geological setting and metallogenesis[J]. Ore Geology Reviews, 2021, 130: 103988. [9] 陈安国, 吕庆田, 杜建国, 等. 华南地壳及壳幔过渡带泊松比及其地质意义[J]. 中国地质, 2019, 46(4): 750-758. CHEN An-guo, LÜ Qing-tian, DU Jian-guo, et al. The Poisson’s ratio of the crust-mantle of South China and its geological significance[J]. Geology in China, 2019, 46(4): 750-758 (in Chinese). [10] 陈昌昕, 吕庆田, 陈凌, 等. 华南陆块地壳厚度与物质组成: 基于天然地震接收函数研究[J]. 中国科学: 地球科学, 2022, 52(4): 760-776. CHEN Chang-xi, LÜ Qing-tian, CHEN Ling, et al. Crustal thickness and composition in the South China Block: Constraints from earthquake receiver function[J]. Science China: Earth Sciences, 2022, 52(4): 760-776 (in Chinese). [11] 严加永, 吕庆田, 张永谦, 等. 江南造山带深部边界及成矿制约: 来自综合地球物理的认识[J]. 岩石学报, 2022, 38(2): 544-558. YAN Jia-yong, LÜ Qing-tian, ZHANG Yong-qian, et al. The deep boundaries of Jiangnan orogenic belt and its constraints on metallogenic: From the understanding of integrated geophysics[J]. Acta Petrologica Sinica, 2022, 38(2): 544-558 (in Chinese). [12] 周永章, 李兴远, 郑义, 等. 钦杭结合带成矿地质背景及成矿规律[J]. 岩石学报, 2017, 33(3): 667-681. ZHOU Yong-zhang, LI Xing-yuan, ZHENG Yi, et al. Geological settings and metallogenesis of Qinzhou Bay-Hangzhou Bay orogenic juncture belt, South China[J]. Acta Petrologica Sinica, 2017, 33(3): 667-681 (in Chinese). [13] 马军伟, 黄景秋, 付媛媛. 扬子与华夏块体缝合带区域的Rayleigh及Love波相速度层析成像[J]. 地球物理学报, 2022, 65(4): 1255-1270. MA Jun-wei, HUANG Jing-qiu, FU Yuan-yuan. Phase velocity tomography of Rayleigh and Love waves in the suture zone between the Yangtze and Cathaysia Blocks[J]. Chinese Journal of Geophysics, 2022, 65(4): 1255-1270 (in Chinese). [14] 严加永, 吕庆田, 罗凡, 等. 钦杭何在?来自综合地球物理探测的认识[J]. 中国地质, 2019, 46(4): 690-703. YAN Jia-yong, LÜ Qing-tian, LUO Fan, et al. Where is Qinzhou-Hangzhou juncture belt? Evidence from integrated geophysical exploration[J]. Geology in China, 2019, 46(4): 690-703 (in Chinese). [15] Hess H H. Seismic anisotropy of the uppermost mantle under oceans[J]. Nature, 1964, 203(4945): 629-631. [16] Silver P G, Chan W W. Shear wave splitting and subcontinental mantle deformation[J]. Journal of Geophysical Research: Earth Science, 1991, 96(B10): 16429-16454. [17] Savage M K. Seismic anisotropy and mantle deformation: What have we learned from shear wave splitting?[J]. Reviews of Geophysics, 1999, 37(1): 65-106. [18] Zhang S Q, Karato S I. Lattice preferred orientation of olivine aggregates deformed in simple shear[J]. Nature, 1995, 375(6534): 774-777. [19] 郑斯华, 高原. 中国大陆岩石层的方位各向异性[J]. 地震学报, 1994, 16(2): 131-140. ZHENG Si-hua, GAO Yuan. Azimuthal anisotropy of lithosphere in Chinese Mainland[J]. Acta Seismologica Sinica, 1994, 16(2): 131-140 (in Chinese). [20] 邹振轩, 李金龙, 俞铁宏, 等. 温州珊溪水库地震S波分裂研究[J]. 地震学报, 2010, 32(4): 423-432. ZOU Zhen-xuan, LI Jin-long, YU Tie-hong, et al. A study on S-wave splitting using waveform data from Shanxi reservoir induced earthquakes in Wenzhou of China[J]. Acta Seismologica Sinica, 2010, 32(4): 423-432 (in Chinese). [21] 石玉涛, 高原. 华南块体中部上地壳剪切波分裂特征[J]. 地球物理学报, 2022, 65(9): 3268-3279. SHI Yu-tao, GAO Yuan. Spatial distribution of shear wave splitting of the upper crust in the central south China block[J]. Chinese Journal of Geophysics, 2022, 65(9): 3268-3279 (in Chinese). [22] 聂仕潭, 段永红, 谭萍, 等. 基于P波接收函数资料的华南大陆东部地壳结构研究[J]. 地球物理学报, 2023, 66(10): 4149-4161. NIE Shi-tan, DUAN Yong-hong, TAN Ping, et al. Crustal structure in eastern areas of south China block based on P-wave receiver functions[J]. Chinese Journal of Geophysics, 2023, 66(10): 4149-4161 (in Chinese). [23] 顾勤平, 丁志峰, 康清清, 等. 郯庐断裂带中南段及邻区Pn波速度结构与各向异性[J]. 地球物理学报, 2016, 59(2): 504-515. GU Qin-ping, DING Zhi-feng, KANG Qing-qing, et al. Pn wave velocity and anisotropy in the middle-southern segment of the Tan-Lu fault zone and adjacent region[J]. Chinese Journal of Geophysics, 2016, 59(2): 504-515 (in Chinese). [24] Chang L J, Wang C Y, Ding Z F. Seismic anisotropy of upper mantle in eastern China[J]. Science China: Earth Sciences, 2009, 52(6): 774-783. [25] Shi D, Lü Q, Xu W, et al. Crustal structure beneath the middle-lower Yangtze metallogenic belt in East China: Constraints from passive source seismic experiment on the Mesozoic intra-continental mineralization[J]. Tectonophysics, 2013, 606: 48-59. [26] 王椿镛, 常利军, 丁志峰, 等. 中国大陆上地幔各向异性和壳幔变形模式[J]. 中国科学: 地球科学, 2014, 44(1): 98-110. WANG Chun-yong, CHANG Li-jun, DING Zhi-feng, et al. Upper mantle anisotropy and crust-mantle deformation pattern beneath the Chinese mainland[J]. Science China: Earth Sciences, 2014, 44(1): 98-110 (in Chinese). [27] Liu K H, Gao S S, Gao Y, et al. Shear wave splitting and mantle flow associated with the deflected Pacific slab beneath northeast Asia[J]. Journal of Geophysical Research: Solid Earth, 2008, 113(B1): B01305. [28] Gao S S, Liu K H. Significant seismic anisotropy beneath the southern Lhasa Terrane, Tibetan Plateau[J]. Geochemistry, Geophysics, Geosystems, 2009, 10(2): Q02008. [29] Kong F S, Wu J, Liu L, et al. Azimuthal anisotropy and mantle flow underneath the southeastern Tibetan Plateau and northern Indochina Peninsula revealed by shear wave splitting analyses[J]. Tectonophysics, 2018, 747-748: 68-78. [30] 沈胜意, 高原, 刘同振. 剪切波分裂揭示的青藏高原东北缘分层各向异性形态: 从海原断裂至银川地堑[J]. 地球物理学报, 2022, 65(5): 1595-1611. SHEN Sheng-yi, GAO Yuan, LIU Tong-zhen. Two-layer anisotropy revealed by shear wave splitting beneath the NE margin of Tibetan Plateau: From Haiyuan fault to Yinchuan Garben[J]. Chinese Journal of Geophysics, 2022, 65(5): 1595-1611 (in Chinese). [31] Liu K H, Gao S S. Making reliable shear-wave splitting measurements[J]. Bulletin of the Seismological Society of America, 2013, 103(5): 2680-2693. [32] Chen Y L, Niu F L, Liu R F, et al. Crustal structure beneath China from receiver function analysis[J]. Journal of Geophysical Research: Solid Earth, 2010, 115(B3): B03307. [33] Li S L, Mooney W D, Fan J C. Crustal structure of mainland China from deep seismic sounding data[J]. Tectonophysics, 2006, 420(1-2): 239-252. [34] 熊绍柏, 刘宏兵. 浙皖地区地壳—上地幔结构和华南与扬子块体边界[J]. 地球物理学进展, 2000, 15(4): 3-17. XIONG Shao-bai, LIU Hong-bing. Crust mantle structure of Zhejiang Anhui region and the boundary between Yangzi Block and Huanan Block[J]. Progress in Geophysics, 2000, 15(4): 3-17 (in Chinese). [35] 黄晖. 下扬子及邻区的地壳上地幔结构与各向异性[D]. 南京: 南京大学, 2013. HUANG Hui. The crustal and upper mantle structure and anisotropy beneath the lower Yangtze Craton and its adjacent regions[D]. Nanjing: Nanjing University, 2013 (in Chinese). [36] McNamara D E, Owens T J, Silver P G, et al. Shear wave anisotropy beneath the Tibetan Plateau[J]. Journal of Geophysical Research: Solid Earth, 1994, 99(B7): 13655-13664. [37] Vinnik L, Oreshin S, Makeyeva L, et al. Anisotropic lithosphere under the Fennoscandian shield from P receiver functions and SKS waveforms of the POLENET/LAPNET array[J]. Tectonophysics, 2014, 628: 45-54. [38] An M J, Shi Y L. Lithospheric thickness of the Chinese continent[J]. Physics of the Earth and Planetary Interiors, 2006, 159(3-4): 257-266. [39] 胥颐, 李志伟, 刘劲松, 等. 黄海及其邻近地区的Pn波速度与各向异性[J]. 地球物理学报, 2008, 51(5): 1444-1450. XU Yi, LI Zhi-wei, LIU Jing-song, et al. Pn wave velocity and anisotropy in the Yellow Sea and adjacent region[J]. Chinese Journal of Geophysics, 2008, 51(5): 1444-1450 (in Chinese). [40] 孟亚锋, 姚华建, 王行舟, 等. 基于背景噪声成像方法研究郯庐断裂带中南段及邻区地壳速度结构与变形特征[J]. 地球物理学报, 2019, 62(7): 2490-2509. MENG Ya-feng, YAO Hua-jian, WANG Xing-zhou, et al. Crustal velocity structure and deformation features in the central-southern segment of Tanlu fault zone and its adjacent area from ambient noise tomography[J]. Chinese Journal of Geophysics, 2019, 62(7): 2490-2509 (in Chinese). [41] 王倩, 黄金莉, 刘志坤, 等. 中国东部及其邻区上地幔顶部Pn波速度结构及各向异性[J]. 地球物理学报, 2018, 61(7): 2750-2759. WANG Qian, HUANG Jin-li, LIU Zhi-kun, et al. Pn velocity and anisotropy of uppermost mantle beneath east China and adjacent regions[J]. Chinese Journal of Geophysics, 2018, 61(7): 2750-2759 (in Chinese). [42] 易桂喜, 姚华建, 朱介寿, 等. 用Rayleigh面波方位各向异性研究中国大陆岩石圈形变特征[J]. 地球物理学报, 2010, 53(2): 256-268. YI Gui-xi, YAO Hua-jian, ZHU Jie-shou, et al. Lithospheric deformation of continental China from Rayleigh wave azimuthal anisotropy[J]. Chinese Journal of Geophysics, 2010, 53(2): 256-268 (in Chinese). [43] 舒良树, 周新民. 中国东南部晚中生代构造作用[J]. 地质论评, 2002, 48(3): 249-260. SHU Liang-shu, ZHOU Xin-min. Late Mesozoic tectonism of southeast China[J]. Geological Review, 2002, 48(3): 249-260 (in Chinese). [44] 徐磊, 李三忠, 刘鑫, 等. 华南钦杭结合带东段成矿特征与构造背景[J]. 海洋地质与第四纪地质, 2012, 32(5): 57-66. XU Lei, LI San-zhong, LIU Xin, et al. Tectonic settings and metallogenism of the eastern segment of the Qin-Hang Belt, south China[J]. Marine Geology & Quaternary Geology, 2012, 32(5): 57-66 (in Chinese). [45] 郑洪伟, 李廷栋. 长江中下游成矿带岩石圈深部结构的远震P波层析成像[J]. 地球物理学进展, 2013, 28(5): 2283-2293. ZHENG Hong-wei, LI Ting-dong. Deep structure of the middle and lower reaches of Yangtze River metallogenic belt from teleseismic P-wave tomography[J]. Progress in Geophysics, 2013, 28(5): 2283-2293 (in Chinese). [46] 吕庆田, 董树文, 史大年, 等. 长江中下游成矿带岩石圈结构与成矿动力学模型深部探测综述[J]. 岩石学报, 2014, 30(4): 889-906. LÜ Qing-tian, DONG Shu-wen, SHI Da-nian, et al. Lithosphere architecture and geodynamic model of Middle and Lower Reaches of Yangtze Metallogenic Belt: A review from SinoProbe[J]. Acta Petrologica Sinica, 2014, 30(4): 889-906 (in Chinese). [47] Li J H, Dong S W, Cawood P A, et al. An Andean-type retro-arc foreland system beneath northwest South China revealed by SINOPROBE profiling[J]. Earth and Planetary Science Letters, 2018, 490: 170-179. [48] Lin S F, Xing G F, Davis D W, et al. Appalachian-style multi-terrane Wilson cycle model for the assembly of South China[J]. Geology, 2018, 46(4): 319-322. [49] 史大年, 吕庆田, 徐文艺, 等. 长江中下游成矿带及邻区地壳结构MASH成矿过程的P波接收函数成像证据?[J]. 地质学报, 2012, 86(3): 389-399. SHI Da-nian, LÜ Qing-tian, XU Wen-yi, et al. Crustal structures beneath the mid-lower Yangtze metallogenic belt and its adjacent regions in Eastern China-Evidences from P-wave receiver function imaging for a MASH[J]. Acta Geologica Sinica, 2012, 86(3): 389-399 (in Chinese). [50] 罗凡, 严加永, 张冲, 等. 华南陆块岩石圈有效弹性厚度及其构造意义[J]. 地球学报, 2022, 43(6): 771-784. LUO Fan, YAN Jia-yong, ZHANG Chong, et al. The effective elastic thickness of lithosphere and its tectonic implications in the South China Block[J]. Acta Geoscientica Sinica, 2022, 43(6): 771-784 (in Chinese). [51] 杨晓瑜, 李红谊, 吴萍萍, 等. 利用SKS波分裂研究上地幔各向异性及其在中国东部的应用[J]. 地震工程学报, 2016, 38(Z1): 55-64. YANG Xiao-yu, LI Hong-yi, WU Ping-ping, et al. Study on upper mantle anisotropy using SKS wave splitting and its application in Eastern China[J]. China Earthquake Engineering Journal, 2016, 38(Z1): 55-64 (in Chinese). [52] 吴晶, 高原, 蔡晋安, 等. 华夏地块东南部地壳地震各向异性特征初步研究[J]. 地球物理学报, 2007, 50(6): 1748-1756. WU Jing, GAO Yuan, CAI Jin-an, et al. Preliminary study on seismic anisotropy in the crust in southeast of Cathaysia Block[J]. Chinese Journal of Geophysics, 2007, 50(6): 1748-1756 (in Chinese). [53] 林玉婷, 于勇, 陈永顺. 华南块体各向异性分区及上地幔动力学含义[J]. 北京大学学报(自然科学版), 2022, 58(6): 1069-1076. LIN Yu-ting, YU Yong, CHEN Yong-shun. Anisotropic zoning and dynamic mechanism of upper mantle beneath South China Block[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2022, 58(6): 1069-1076 (in Chinese). [54] 郑群凡, 张怀, 王勤, 等. 新生代华南及邻区上地幔各向异性深部动力学机制的数值模拟[J]. 地球物理学报, 2023, 66(5): 2007-2018. ZHENG Qun-fan, ZHANG Huai, WANG Qin, et al. Upper mantle anisotropy and dynamics beneath Cenozoic South China and its surroundings: Insights from numerical simulation[J]. Chinese Journal of Geophysics, 2023, 66(5): 2007-2018 (in Chinese). [55] Li Z X, Li X H. Formation of the 1300-km-wide intracontinental orogen and postorogenic magmatic province in Mesozoic South China: A flat-slab subduction model[J]. Geology, 2007, 35(2): 179-182. [56] 许忠淮, 汪素云, 黄雨蕊, 等. 由大量的地震资料推断的我国大陆构造应力场[J]. 地球物理学报, 1989, 32(6): 636-647. XU Zhong-huai, WANG Su-yun, HUANG Yu-rui, et al. The tectonic stress field of Chinese continent deduced from a great number of earthquakes[J]. Chinese Journal of Geophysics, 1989, 32(6): 636-647 (in Chinese). [57] 孙文斌, 和跃时. 西太平洋Benioff带的形态及其应力状态[J]. 地球物理学报, 2004, 47(3): 433-440. SUN Wen-bin, HE Yue-shi. Characteristics of the subduction zone in the western Pacific and its stress state[J]. Chinese Journal of Geophysics, 2004, 47(3): 433-440 (in Chinese). [58] He C S, Santosh M. Crustal evolution and metallogeny in relation to mantle dynamics: A perspective from P-wave tomography of the South China Block[J]. Lithos, 2016, 263: 3-14. [59] 邓阳凡, 李守林, 范蔚茗, 等. 深地震测深揭示的华南地区地壳结构及其动力学意义[J]. 地球物理学报, 2011, 54(10): 2560-2574. DENG Yang-fan, LI Shou-lin, FAN Wei-ming, et al. Crustal structure beneath south China revealed by deep seismic soundings and its dynamics implications[J]. Chinese Journal of Geophysics, 2011, 54(10): 2560-2574 (in Chinese). [60] 施顺英, 周硕愚, 帅平, 等. 中国大陆及其东南沿海现时地壳运动[J]. 自然科学进展, 2000, 10(3): 273-277. SHI Shun-ying, ZHOU Shuo-yu, SHUAI Ping, et al. Current crustal movement in Chinese mainland and its southeast coast[J]. Progress in Natural Science, 2000, 10(3): 273-277 (in Chinese). [61] 姚陈, 郝重涛, 张广利. SKS波对地壳裂隙各向异性的响应理论地震图研究[J]. 地球物理学报, 2016, 59(7): 2498-2509. YAO Chen, HAO Chong-tao, ZHANG Guang-li. A study of synthetic seismograms for SKS-wave response to crustal fractured-induce anisotropy[J]. Chinese Journal of Geophysics, 2016, 59(7): 2498-2509 (in Chinese). [62] Brechner S, Klinge K, Krüger F, et al. Backazimuthal variations of splitting parameters of teleseismic SKS phases observed at the broadband stations in Germany[J]. Pure & Applied Geophysics, 1998, 151(2-4): 305-331. [63] Shen S Y, Gao Y. Research progress on layered seismic anisotropy: A review[J]. Earthquake Research Advances, 2021, 1(1): 6-11. [64] Silver P G, Savage M K. The interpretation of shear-wave splitting parameters in the presence of two anisotropic layers[J]. Geophysical Journal International, 1994, 119(3): 949-963. [65] 李振, 吴萍萍. 多层水平各向异性介质的剪切波分裂参数计算[J]. CT理论与应用研究, 2013, 22(2): 225-236. LI Zhen, WU Ping-ping. The splitting parameters computation in the presence of multiple anisotropy layers[J]. CT Theory and Applications, 2013, 22(2): 225-236 (in Chinese). [66] 杨文采, 何良军, 江金生, 等. 浙江省地壳构造综合研究[J]. 地质学报, 2022, 96(1): 95-103. YANG Wen-cai, HE Liang-jun, JIANG Jin-sheng et al. A synthetic study of the crust structures of Zhejiang Province[J]. Acta Geologica Sinica, 2022, 96(1): 95-103 (in Chinese). |
| [1] | 高原, 李心怡, 李抒予, 夏新宇, 杨逸文, 王琼. 2023年12月18日积石山6.2级地震的深浅变形构造分析[J]. 地震, 2024, 44(1): 160-166. |
| [2] | 杨唯佳, 周艳杰, 姜恩元, 石玉涛, 马啸, 贺茜君, 黄雪源. 2019年长宁MS6.0地震周边区域速度与P波各向异性成像研究[J]. 地震, 2023, 43(4): 1-20. |
| [3] | 何康, 解滔, 王燚坤, 李军辉, 郑海刚. 2011年安庆M4.8地震前合肥台地电阻率异常变化分析[J]. 地震, 2023, 43(2): 72-84. |
| [4] | 杨业鑫, 孟国杰, 吴伟伟, 罗艳, Thant Myo. 滇西南地区深浅部构造变形特征[J]. 地震, 2023, 43(1): 74-92. |
| [5] | 车子强, 吴忠良, 高原. 利用背景噪声资料研究海原断裂带及邻区Rayleigh波相速度和方位各向异性[J]. 地震, 2023, 43(1): 105-123. |
| [6] | 孙海霞, 林向东, 司政亚, 钟世军, 赵桂儒, 侯丽娟. 基于沙城地震台的河北怀来地区剪切波分裂特征[J]. 地震, 2022, 42(4): 70-88. |
| [7] | 李新艳, 曾宪伟, 卢军, 马禾青, 崔瑾, 卫定军. 基于断层虚位错模式分析2015年内蒙古阿左旗MS5.8地震前地电阻率变化[J]. 地震, 2022, 42(2): 89-99. |
| [8] | 查小惠. 倾斜界面和各向异性对谐波分解方法的影响研究[J]. 地震, 2022, 42(1): 99-110. |
| [9] | 李莹, 高原. 青藏高原东南缘地质构造基本形态与地震各向异性基本特征[J]. 地震, 2021, 41(4): 15-45. |
| [10] | 陈彦含, 吴庆举. 中国数字地震台网(CDSN)单台站P波偏振分析[J]. 地震, 2020, 40(4): 49-62. |
| [11] | 刘希康, 李媛, 丁志峰, 常利军, 王跃东. 2012年9月7日彝良地震震源区横波分裂变化特征分析[J]. 地震, 2020, 40(1): 73-83. |
| [12] | 吴鹏,李相平,高原,石玉涛,刘立申. 邢台地区地壳各向异性特征初步研究[J]. 地震, 2017, 37(1): 73-81. |
| [13] | 王琼, 高原, 钮凤林, 陈运泰. 利用接收函数计算地壳各向异性的可靠性分析及倾斜界面的影响*[J]. 地震, 2016, 36(2): 14-25. |
| [14] | 刘庚, 高原, 石玉涛. 云贵高原东南部地壳各向异性初步研究[J]. 地震, 2015, 35(3): 76-85. |
| [15] | 石玉涛, 刘澜波, 高原. 利用介质的不均匀分布构建各向异性模型[J]. 地震, 2015, 35(2): 1-10. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||