欢迎访问《地震》,

地震 ›› 2025, Vol. 45 ›› Issue (1): 130-146.doi: 10.12196/j.issn.1000-3274.2025.01.009

• • 上一篇    下一篇

采用地震波研究滑坡的动力学过程

江勇1,2, 白玲1,2, 黄兴辉3, 谢军2,4   

  1. 1.中国科学院青藏高原研究所, 青藏高原地球系统与资源环境国家重点实验室, 北京 100101;
    2.中国科学院大学, 北京 100049;
    3.中国地震台网中心, 北京 100045;
    4.中国科学院精密测量科学与技术创新研究院, 大地测量与地球动力学国家重点实验室, 武汉 430077
  • 收稿日期:2024-03-02 接受日期:2024-05-21 发布日期:2024-12-06
  • 通讯作者: 白玲, 研究员。 E-mail: bailing@itpcas.ac.cn
  • 作者简介:江勇(1995-), 男, 安徽六安人, 在读博士研究生, 主要从事滑坡的地震学研究。 E-mail: jiangyong@itpcas.ac.cn
  • 基金资助:
    国家自然科学基金项目(42130312); 第二次青藏高原综合科学考察项目(2019QZKK07)

Dynamic Processes of Landslides Revealed by Seismic Waveforms

JIANG Yong1,2, BAI Ling1,2, HUANG Xing-hui3, XIE Jun2,4   

  1. 1. State Key Laboratory of Tibetan Plateau Earth System Science (LATPES), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China;
    3. China Earthquake Networks Center, Beijing 100045, China;
    4. State Key Laboratory of Geodesy and Earth’s Dynamics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430077, China
  • Received:2024-03-02 Accepted:2024-05-21 Published:2024-12-06

摘要: 青藏高原及周边地区不仅地震活动频繁, 同时也经常发生多种其他类型地质灾害, 包括滑坡、 冰崩、 雪崩、 泥石流、 冰湖溃决等。 这些灾害由岩石、 冰川等碎屑物受到重力作用沿着斜坡向下快速滑动而形成, 其发生过程受到构造运动和环境变化等多种因素的共同影响。 在地震学领域, 这些地质灾害被认为是受到山体斜坡上的单力作用, 地震波为认识这些地质灾害的震源参数和发生过程提供重要资料。 本文通过收集前人的研究成果, 对上述的滑坡类地质灾害前沿进展进行系统回顾, 对采用地震波研究滑坡类震源的基本原理进行总结分析。 在此基础上, 选取2017年茂县滑坡作为研究实例, 对地震波形记录进行时频分析、 受力过程反演等计算, 通过时间轴对比细化过程划分、 优化台站数据选择、 改善分析过程。 结果表明, 茂县滑坡过程包括滑前启动、 主要滑动和滑后调整三个时期, 总持续时间约123 s, 其中主要滑动过程包括加速和减速两个阶段, 最大速度约54 m/s, 最大水平位移约2 km。 加速阶段低频信号显著, 减速滑动过程高频信号显著增强, 揭示了滑床坡度变化、 碎屑物成分及其滑动摩擦作用的综合影响。 随着地震观测和数据处理技术的不断改进, 地震波对滑坡的识别能力逐步增强, 有助于提高对滑坡类地质灾害的监测能力。

关键词: 滑坡, 地震波, 滑动过程, 青藏高原

Abstract: The Tibetan Plateau and its surrounding areas not only are characterized by intense seismic activity, but also experience various types of geological disasters, including landslides, ice avalanches, snow avalanches, debris flows, and glacial lake outburst floods. These disasters result from the rapid downward movement of debris such as rocks and glaciers, and are influenced by factors such as tectonic movements and environmental changes. From a seismological perspective, these geological hazards are considered to be the result of a unidirectional force acting on mountain slopes, with seismic waves providing crucial information about the source parameters and processes of these hazards. This paper systematically reviews the recent advances in the study of landslide-type geological hazards by compiling previous studies and summarizes the basic principles of using seismic waves to study landslide sources. The 2017 Maoxian landslide is selected as a case study, and seismic waveform records are subjected to time-frequency analysis, force-time function inversion, and other calculations. The analysis process is refined through the comparison of timelines and optimization of station data selection. The results indicate that the Maoxian landslide process includes three stages: pre-sliding initiation, main sliding, and post-sliding adjustment, with a total duration of approximately 123 seconds. The main sliding process comprises acceleration and deceleration phases, with a maximum velocity of about 54 m/s and a maximum horizontal displacement of about 2 km. Low-frequency signals are significant during the acceleration phase, while high-frequency signals are significantly enhanced during the deceleration sliding process, revealing the comprehensive impact of changes in slope gradient, debris composition, and sliding friction. With the continuous improvement of seismic observation and data processing technology, the ability of seismic waves to identify landslides is gradually enhanced, which helps to improve the monitoring capability of landslide-type geological hazards.

Key words: Landslides, Seismic waveforms, Sliding processes, Tibetan Plateau

中图分类号: