欢迎访问《地震》,

地震 ›› 2017, Vol. 37 ›› Issue (3): 127-137.

• • 上一篇    下一篇

基于SfM方法生成的密集点云数据的典型建筑物分类研究

张雪华, 王晓青, 袁小祥, 王金霞   

  1. 中国地震局地震预测研究所, 北京 100036
  • 收稿日期:2017-01-04 发布日期:2019-08-09
  • 作者简介:张雪华(1990-), 男, 山东聊城人, 在读硕士研究生, 主要从事遥感、地理信息系统在地震应急及评估方面的应用研究。
  • 基金资助:
    中国地震局地震行业专项(201508010)资助

Classification of Typical Building Roof Geometry Types based on Dense Point Clouds of SfM Method

ZHANG Xue-hua,WANG Xiao-qing,YUAN Xiao-xiang,WANG Jin-xia   

  1. Institute of Earthquake Science, CEA, Beijing 100036, China
  • Received:2017-01-04 Published:2019-08-09

摘要: 建筑物类型的研究对于震后救援和损失评估具有重要作用, 目前针对SfM(Structure from Motion)方法生成的三维密集点云数据的建筑物分类研究较少。 首先基于SfM原理生成密集点云, 然后通过建筑物单体点云高度均值和标准差对建筑物的高度和屋顶类型进行初步分类, 进一步提出了建筑物单体屋顶最高点与最低点点云中心点的水平距离因子对单坡和双坡屋顶类型进行再分类的方法。 以玛曲县城为研究区, 使用SfM算法对无人机影像进行处理, 并利用上述多因子再分类方法进行建筑物高度和类型分类。 实验结果表明, 设置高度均值和标准差阈值分别为6 m和0.25 m时能够准确区分单层、 非单层建筑物和平、 坡屋顶类型建筑物; 对于单坡和双坡顶建筑物, 利用距离因子, 设定距离阈值1.5 m时可完全区分。 对该地区典型建筑物的研究结果表明, 通过基于点云分析的建筑物高度和类型提取方法, 可为地震灾害风险分析和未来潜在地震灾害损失预测所需的建筑物信息的提取提供重要参考。

关键词: SfM, 三维点云, 建筑物分类, 地震灾害评估

Abstract: Studies of building types play an important role in the earthquake rescue and damage assessment, but now research of building classification is relatively few based on dense point clouds of SfM (Structure from Motion) method. Firstly, this paper use SfM method to generate dense points, and classify the buildings height and the roof types with the mean and standard deviation of the height of dense point clouds, and then use the factor of the plane distance of the averages of high and low points to classify the roof types. The study area of this paper is Maqu country, and we processed the UAV images using SfM method and used the factors to classify the height and roof types. For the dense point clouds data from SfM method, the experimental results show that when setting the threshold of height and standard deviations of 6 m and 0.25 m respectively can accurately distinguish the layer number of building and the roof. Using the distance factor to distinguish the shed and dual slope construction, when the distance threshold is 1.5 m, we will get ideal result. Classification of typical buildings with dense point clouds can provide a certain reference function for earthquake disaster risk analysis and future earthquake disaster loss assessment.

Key words: Building roof geometry feature, SfM, 3D point clouds, Classifying factors

中图分类号: