欢迎访问《地震》,

地震 ›› 1999, Vol. 19 ›› Issue (3): 274-280.

• • 上一篇    下一篇

地下水位的混沌和多重分形特征演化及其中短期预报意义

李强, 徐桂明, 黄耘   

  1. 中国南京 210014 江苏省地震局
  • 收稿日期:1998-08-14 修回日期:1999-01-22 出版日期:1999-07-31 发布日期:2022-07-14
  • 作者简介:李强,男,1958年11月出生,副研究员,1990年获硕士学位,主要从事地震学方法和前兆观测手段的地震分析预报研究工作。

EVOLUTION OF CHAOTIC AND MULTIFRACTAL CHARACTERISTICS FOR WATER LEVEL AND ITS APPLICATION IN EARTHQUAKE PREDICTION

Li Qiang, Xu Guiming, Huang Yun   

  1. Seismological Bureau of Jiangsu Province, Nanjing 210014, China
  • Received:1998-08-14 Revised:1999-01-22 Online:1999-07-31 Published:2022-07-14

摘要: 采用苏20井记录到的1995年7月1日至1997年6月30日地下水位观测数据作为研究的原始资料,计算并研究了1996年11月9日南黄海 MS 6.1地震前后地下水位系统混沌吸引子的关联维数D2、二阶熵K2和最大Lyapunov指数λ1,并用推广GP法研究了地震前后系统多重分形的广义维数谱Dq。研究结果表明:地下水位系统为混沌系统,系统的自由度在3~16之间;地震过程中系统有降维减熵现象,震前广义维数谱Dq左半边曲线变陡,因而可被看作为强震前的前兆信息。此结果对今后在预报工作中认识地震前兆观测的非线性动力学特征和利用这些特征进行地震预报具有重要的实用意义。

关键词: 地震预报, 地下水位, 混沌, 多重分形, 广义分维谱

Abstract: Using the observed water level data recorded from 1 July 1995 to 30 June 1997 a t Su20 well, the correlation dimension D2 and o rder-2 Renyi entropy K2 as well as the largest Lya-punov exponent λ1 of the chaotic attractors of the water level system before and after South Yellow Sea earthquake (MS 6. 1) in 9 Nov ember 1996 are calculated and studied with the time-delay phase space reconstruction algorithm. Besides, the generalized fractal dimen-sion spectrum Dq before and after the earthquake is also calculated and studied with the generalized Grassberger-Procaccia algorithm. The research result indicates that the water level system is a chaotic system, the freedom degree of which is within the range of 3~16, and the dimension and entropy of the system declined before the earthquake. It also indi-cates that the left half of the generalized fractal dimension spectrum Dq curve became steep before the earthquake. The conclusion of this research can be of great applicable signifi-cance in recognizing the nonlinear dynamic features of the earthquake precursor observa-tion and in earthquake prediction.

Key words: Earthquake prediction, Water level, Chaos, Multifractal, Generalized fractal dimension spectrum