[1] England P, Houseman G. Extension during continental convergence, with application to the Tibetan Plateau[J]. Journal of Geophysical Research: Solid Earth, 1989, 94(B12): 17561-17579. [2] Molnar P, England P, Martinod J. Mantle dynamics, uplift of the Tibetan Plateau, and the Indian monsoon[J]. Reviews of Geophysics, 1993, 31(4): 357-396. [3] Schmalholz S M, Kaus B J P, Burg J P. Stress-strength relationship in the lithosphere during continental collision[J]. Geology, 2009, 37(9): 775-778. [4] Thielmann M, Kaus B J P. Shear heating induced lithospheric-scale localization: Does it result in subduction?[J]. Earth and Planetary Science Letters, 2012, 359-360: 1-13. [5] Hirth G, Tullis J. The brittle-plastic transition in experimentally deformed quartz aggregates[J]. Journal of Geophysical Research: Solid Earth, 1994, 99(B6): 11731-11747. [6] Moulas E, Schmalholz S M, Podladchikov Y, et al. Relation between mean stress, thermodynamic, and lithostatic pressure[J]. Journal of Metamorphic Geology, 2019, 37(1): 1-14. [7] Allmann B P, Shearer P M. Global variations of stress drop for moderate to large earthquakes[J]. Journal of Geophysical Research: Solid Earth, 2009, 114(B1): 1-22. [8] Ghosh A, Holt W E. Plate motions and stresses from global dynamic models[J]. Science, 2012, 335(6070): 838-843. [9] England P, Molnar P. Active deformation of Asia: From kinematics to dynamics[J]. Science, 1997, 278(5338): 647-650. [10] Flesch L M, Holt W E, Haines A J, et al. Dynamics of the Pacific-North American plate boundary in the western United States[J]. Science, 2000, 287(5454): 834-836. [11] Flesch L M, Holt W E, Haines A J, et al. The dynamics of western North America: Stress magnitudes and the relative role of gravitational potential energy, plate interaction at the boundary and basal tractions[J]. Geophysical Journal International, 2007, 169(3): 866-896. [12] Ghosh A, Holt W E, Wen L, et al. Joint modeling of lithosphere and mantle dynamics elucidating lithosphere-mantle coupling[J]. Geophysical Research Letters, 2008, 35(16): L16309. [13] Humphreys E D, Coblentz D D. North American dynamics and western US tectonics[J]. Reviews of Geophysics, 2007, 45(3): 1-30. [14] Wang X G, Holt W E, Ghosh A. Joint modeling of lithosphere and mantle dynamics: Evaluation of constraints from global tomography models[J]. Journal of Geophysical Research: Solid Earth, 2015, 120(12): 8633-8655. [15] Ghosh A, Holt W E, Flesch L M, et al. Gravitational potential energy of the Tibetan Plateau and the forces driving the Indian plate[J]. Geology, 2006, 34(5): 321-324. [16] Bassin C. The current limits of resolution for surface wave tomography in North America[C]//EOS Transaction AGU. 81: Fall Meeting Supplementary Abstract, 2000. [17] 张健, 石耀霖. 青藏高原隆升及伸展变形中的重力位能[J]. 地球物理学报, 2002, 45(2): 226-232. ZHANG Jian, SHI Yao-lin. The role of gravitational potential energy in raising and spreading of Qinghai-Xizang Plateau[J]. Chinese Journal of Geophysics, 2002, 45(2): 226-232 (in Chinese). [18] Schmalholz S M, Duretz T, Hetényi G, et al. Distribution and magnitude of stress due to lateral variation of gravitational potential energy between Indian lowland and Tibetan plateau[J]. Geophysical Journal International, 2019, 216(2): 1313-1333. [19] Laske G, Masters G, Ma Z, et al. Update on CRUST1.0-A 1-degree global model of Earth’s crust[C]. Geophysical Research Abstracts, 15, Abstract EGU2013-2658, 2013. [20] Kreemer C, Holt W E, Haines A J. An integrated global model of present-day plate motions and plate boundary deformation[J]. Geophysical Journal International, 2003, 154(1): 8-34. [21] Wang Z Y, Fu G Y, She Y W. Crustal density structure, lithosphere flexure mechanism, and isostatic state throughout the Qinling Orogen revealed by in situ dense gravity observations[J]. Journal of Geophysical Research: Solid Earth, 2018, 123(11): 10026-10039. [22] Ghosh A, Holt W E, Flesch L M. Contribution of gravitational potential energy differences to the global stress field[J]. Geophysical Journal International, 2009, 179(2): 787-812. [23] Amante C, Eakins B W. ETOPO1 arc-minute global relief model: procedures, data sources and analysis[R]. NOAA technical memorandum NESDIS NGDC-24. National Geophysical Data Center, NOAA, 2009. [24] Becker T W, Lowry A R, Faccenna C, et al. Western US intermountain seismicity caused by changes in upper mantle flow[J]. Nature, 2015, 524(7566): 458-461. [25] Cazenave A, Souriau A, Dominh K. Global coupling of Earth surface topography with hotspots, geoid and mantle heterogeneities[J]. Nature, 1989, 340(6228): 54-57. [26] Panasyuk S V, Hager B H. Models of isostatic and dynamic topography, geoid anomalies, and their uncertainties[J]. Journal of Geophysical Research: Solid Earth, 2000, 105(B12): 28199-28209. [27] Steinberger B, Schmeling H, Marquart G. Large-scale lithospheric stress field and topography induced by global mantle circulation[J]. Earth and Planetary Science Letters, 2001, 186(1): 75-91. [28] Lithgow-Bertelloni C, Guynn J H. Origin of the lithospheric stress field[J]. Journal of Geophysical Research: Solid Earth, 2004, 109(B1). [29] Hager B H, Clayton R W, Richards M A, et al. Lower mantle heterogeneity, dynamic topography and the geoid[J]. Nature, 1985, 313(6003): 541-545. [30] Watts A B. Isostasy and flexure of the lithosphere[M]. Cambridge: Cambridge University Press, 2001. [31] 佘雅文, 付广裕, 王灼华, 等. 重力与地形数据揭示的巴颜喀拉块体东缘垂向构造应力场[J]. 地球物理学报, 2017, 60(6): 2480-2492. SHE Ya-wen, FU Guang-yu, WANG Zhuo-hua, et al. Vertical tectonic stress in eastern margin of Bayan Har block revealed by gravity and terrain data[J]. Chinese Journal of Geophysics, 2017, 60(6): 2480-2492 (in Chinese). [32] Wang Z Y, Fu G Y. Gravity analysis of the offset between crustal structure and topography in the Liupan Shan, northeast Tibetan Plateau[J]. Earth, Planets and Space, 2020, 72(1): 1-9. [33] Flesch L M, Haines A J, Holt W E. Dynamics of the India-Eurasia collision zone[J]. Journal of Geophysical Research: Solid Earth, 2001, 106(B8): 16435-16460. [34] Tian X B, Teng J W, Zhang H S, et al. Structure of crust and upper mantle beneath the Ordos Block and the Yinshan Mountains revealed by receiver function analysis[J]. Physics of the Earth and Planetary Interiors, 2011, 184(3-4): 186-193. |