[1] 车用太, 刘五洲, 鱼金子. 地壳流体与地震活动关系及其在强震预测中的意义[J]. 地震地质, 1998, 20(4): 144-149. CHE Yong-tai, LIU Wu-zhou, YU Jin-zi. The relationship between crustal fluid and seismic activity and its significance in the prediction of strong earthquakes[J]. Seismology and Geology, 1998, 20(4): 144-149 (in Chinese). [2] Griffin S, Horton T W, Oze C. Origin of warm springs in Banks Peninsula, New Zealand[J]. Applied Geochemistry, 2017, 86: 1-12. [3] Cortes J E, Muoz L F, Gonzalez C A, et al. Hydrogeochemistry of the formation waters in the San Francisco field, UMV basin, Colombia-A multivariate statistical approach[J]. Journal of Hydrology, 2016, 539: 113-124. [4] Walraevens K, Bakundukize C, Mtoni Y E, et al. Understanding the hydrogeochemical evolution of groundwater in Precambrian basement aquifers: A case study of Bugesera region in Burundi[J]. Journal of Geochemical Exploration, 2018, 188: 24-42. [5] Taucare M, Daniele L, Viguier B, et al. Groundwater resources and recharge processes in the Western Andean Front of Central Chile[J]. Science of the Total Environment, 2020, 722: 137824. [6] Kingsley S P, Biagi P F, Piccolo R, et al. Hydrogeochemical precursors of strong earthquakes: A realistic possibility in Kamchatka[J]. Physics and Chemistry of the Earth, Part C: Solar, Terrestrial & Planetary Science, 2001, 26(10-12): 769-774. [7] Claesson L, Skelton A, Graham C, et al. Hydrogeochemical changes before and after a major earthquake[J]. Geology, 2004, 32(8): 641-644. [8] Sturrock C P, Catlos E J, Miller N R, et al. Fluids along the North Anatolian Fault, Niksar basin, north central Turkey: Insight from stable isotopic and geochemical analysis of calcite veins[J]. Journal of Structural Geology, 2017, 101: 58-79. [9] Guerra M, Lombardi S. Soil-gas method for tracing neotectonic faults in clay basins: the Pisticci field (Southern Italy)[J]. Tectonophysics, 2001, 339(3-4): 511-522. [10] Virk H S, Walia V. Helium-radon precursory signals of Chamoli earthquake, India[J]. Radiation Measurements, 2001, 34(1-6): 379-384. [11] Woith H, Wang R J, Maiwald U, et al. On the origin of geochemical anomalies in groundwaters induced by the Adana 1998 earthquake[J]. Chemical Geology, 2013, 339: 177-186. [12] King C Y, Basler D, Presser T S, et al. In search of earthquake-related hydrologic and chemical changes along Hayward Fault[J]. Applied Geochemistry, 1994, 9(1): 83-91. [13] Ingebritsen S E, Manga M. Earthquakes: Hydrogeochemical precursors[J]. Nature Geoscience, 2014, 7(10): 697-698. [14] Skelton A, Andrén M, Kristmannsdóttir H, et al. Changes in groundwater chemistry before two consecutive earthquakes in Iceland[J]. Nature Geoscience, 2014, 7(10): 752-756. [15] 张磊, 刘耀炜, 任宏微, 等. 氢氧稳定同位素在地下水异常核实中的应用[J]. 地震地质, 2016, 38(3): 721-731. ZHANG Lei, LIU Yao-wei, REN Hong-wei, et al. Application of stable oxygen and hydrogen isotopes to the verification of groundwater anomalies[J]. Journal of Seismological Research, 2016, 38(3): 721-731 (in Chinese). [16] Shi Z M, Zhang H, Wang G C. Groundwater trace elements change induced by M5.0 earthquake in Yunnan[J]. Journal of Hydrology, 2020, 581: 124424. [17] 余鸣潇. 云南省临沧地区部分温泉水化学同位素特征及成因研究[D]. 北京: 中国地质大学, 2019. YU Ming-xiao. A study of hydrochemcial and isotopic characteristics and formation of some of the hot springs in the Lincang area of Yunnan[D]. Beijing: China University of Geosciences, 2019 (in Chinese). [18] 范永康, 魏蓉花. 云县幸福温泉群形成的地质构造条件分析[J]. 冶金管理, 2020, (1): 150-151. FAN Yong-kang, WEI Rong-hua. Analysis of geological structural conditions of the formation of the Xingfu hot spring group in Yunxian[J]. China Steel Focus, 2020, (1): 150-151 (in Chinese). [19] 董兴权, 龙建章, 文继云, 等. 云南云县发现古地震遗迹[J]. 地震研究, 1984, 7(1): 52. DONG Xing-quan, LONG Jian-zhang, WEN Ji-yun, et al. Ancient earthquake remains found in Yunxian, Yunnan[J]. Journal of Seismological Research, 1984, 7(1): 52 (in Chinese). [20] Wang E, Burchfiel B C. Interpretation of Cenozoic tectonics in the right-lateral accommodation zone between the Ailao Shan shear zone and the Eastern Himalayan Syntaxis[J]. International Geology Review, 1997, 39(3): 191-219. [21] Molnar P, Tapponnier P. Cenozoic tectonics of Asia: Effects of a continental collision[J]. Science, 1975, 189(4201): 419-426. [22] Chen Y, Zhang Z J, Sun C Q, et al. Crustal anisotropy from Moho converted Ps wave splitting analysis and geodynamic implications beneath the eastern margin of Tibet and surrounding regions[J]. Gondwana Research, 2013, 24(3-4): 946-957. [23] Fu B H, Walker R, Sandifor M. The 2008 Wenchuan earthquake and active tectonics of Asia[J]. Journal of Asian Earth Sciences, 2011, 40(4): 797-804. [24] Wang Y, Sieh K, Tun S T, et al. Active tectonics and earthquake potential of the Myanmar region[J]. Journal of Geophysical Research: Solid Earth, 2014, 119(4): 3767-3822. [25] 孙浩越, 江国焰, 何宏林, 等. 云南景谷MS6.6地震对南汀河断裂带地震危险性的影响[J]. 地球物理学报, 2015, 58(11): 4197-4206. SUN Hao-yue, JIANG Guo-yan, HE Hong-lin, et al. The influence of the 2014 Jinggu MS6.6 earthquake on the seismic risk of the Nantinghe fault zone in Yunnan Province, China[J]. Chinese Journal of Geophysics, 2015, 58(11): 4197-4206 (in Chinese). [26] 王晋南, 王洋龙, 安晓文, 等. 南汀河西支断裂北东段最新活动性分析[J]. 地震研究, 2006, 29(3): 264-268. WANG Jin-nan, WANG Yang-long, AN Xiao-wen, et al. Analysis of latest activity on NE-segment of West branch of Nantinghe fault[J]. Journal of Seismological Research, 2006, 29(3): 264-268 (in Chinese). [27] 刘鸣, 付碧宏, 董彦芳. 青藏高原东南缘滇缅地块NE向走滑断裂带的新构造活动与大地震危险性[J]. 地球物理学报, 2015, 58(11): 4147-4186. LIU Ming, FU Bi-hong, DONG Yan-fang. Neotectonics of NE-striking fault zones and earthquake risk in the Yunnan-Myanmar block, southeastern margin of the Tibetan plateau[J]. Chinese Journal of Geophysics, 2015, 58(11): 4147-4186 (in Chinese). [28] 石峰. 南汀河断裂带构造地貌研究[D]. 北京: 中国地震局地质研究所, 2014. SHI Feng. Tectonic geomorphology of the Nantinghe fault in southwestern Yunnan[D]. Beijing: Institute of Geology, China Earthquake Administration, 2014 (in Chinese). [29] 朱玉新, 李玶, 任金卫. 南定河断裂带断层活动特征与古地震事件[J]. 中国地震, 1994(4): 347-356. ZHU Yu-xin, LI Ping, REN Jin-wei. Activity of Nandinghe fault zone and its Paleo earthquake events[J]. Earthquake Research in China, 1994(4): 347-356 (in Chinese). [30] 蔡义汉. 地热直接利用[M]. 天津: 天津大学出版社, 2004. CAI Yi-han. Direct utilization of geothermal heat[M]. Tianjin: Tianjin University Press, 2004 (in Chinese). [31] Sun H Y, He H L, Wei Z Y, et al. Late Quaternary paleoearthquakes along the northern segment of the Nantinghe fault on the southeastern margin of the Tibetan Plateau[J]. Journal of Asian Earth Sciences, 2017, 138: 258-271. [32] Wells D L, Coppersmith K J. New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement[J]. Bulletin of the Seismological Society of America, 1994, 84(4): 974-1002. [33] Blaser L, Kruger F, Ohrnberger M, et al. Scaling relations of earthquake source parameter estimates with special focus on subduction environment[J]. Bulletin of the Seismological Society of America, 2010, 100(6): 2914-2926. [34] 叶涛, 黄清华, 陈小斌. 滇西南地区南汀河断裂带三维深部电性结构及其孕震环境[J]. 地球物理学报, 2018, 61(11): 4504-4517. YE Tao, HUANG Qing-hua, CHEN Xiao-bin. Three-dimensional deep electrical structure and seismogenic environment of Nantinghe fault zone in southwestern Yunnan, China[J]. Chinese Journal of Geophysics, 2018, 61(11): 4504-4517 (in Chinese). [35] Craig H. Isotopic variations in meteoric waters[J]. Science, 1961, 133(3465): 1702-1703. [36] 刘进达, 赵迎昌, 刘恩凯, 等. 中国大气降水稳定同位素时空分布规律探讨[J]. 勘察科学技术, 1997(3): 34-39. LIU Jin-da, ZHAO Ying-chang, LIU En-kai, et al. Discussion on the stable isotope time-space distribution law of China atmosphereric precipitation[J]. Survey Investigation Science and Technology, 1997(3): 34-39 (in Chinese). [37] 周训, 金晓媚, 梁四海, 等. 地下水科学专论(第二版)[M]. 北京: 地质出版社, 2017. ZHOU Xun, JIN Xiao-mei, LIANG Si-hai, et al. Monograph on groundwater science (Second Edition)[M]. Beijing: Geological Publishing House, 2017 (in Chinese). [38] Yu J S, Zhang H B, Yu F J, et al. Oxygen and hydrogen isotopic compositions of meteoric waters in the eastern part of Xizang[J]. Geochemistry, 1984, 3(2): 93-101. [39] 于永亭, 李晓, 郭爽. 云南省龙陵地区温泉水化学特征及其成因分析[J]. 广东微量元素科学, 2008, 15(2): 39-46. YU Yong-ting, LI Xiao, GUO Shuang. Geo-chemical characteristic and reasoning analysis of hot spring water in Longling area in Yunnan Province[J]. Guangdong Weiliang Yuansu Kexue, 2008, 15(2): 39-46 (in Chinese). [40] 沈照理. 水文地球化学基础[M]. 北京: 地质出版社, 1993. SHEN Zhao-li. Hydrogeochemical Basis[M]. Beijing: Geological Publishing House, 1993 (in Chinese). [41]Giggenbach W F. Geothermal solute equilibria. Derivation of Na-K-Mg-Ca geoindicators[J]. Geochimica et Cosmochimica Acta, 1988, 52(12): 2749-2765. [42] 聂飞, 董国臣, 莫宣学, 等. 滇西昌宁-孟连带三叠纪花岗岩地球化学、 年代学及其意义[J]. 岩石学报, 2012, 28(5): 1465-1476. NIE Fei, DONG Guo-chen, MO Xuan-xue, et al. Geochemistry, zircon U-Pb chronology of the Triassic granites in the Changning-Menglian suture zone and their implications[J]. Acta Petrologica Sinica, 2012, 28(5): 1465-1476 (in Chinese). [43] 朱志军, 郭福生, 邱安庆. 江西信江盆地罗塘凹陷膏盐微量元素地球化学特征[J]. 高校地质学报, 2016, 22(4): 598-607. ZHU Zhi-jun, GUO Fu-sheng, QIU An-qing. Trace element geochemical characteristics of gypsum and its geologic significance from the Luotang depression in Xinjiang Basin, Jiangxi[J]. Geological Journal of China Universities, 2016, 22(4): 598-607 (in Chinese). [44] 张春山, 张业成, 吴满路. 南北地震带南段水文地球化学特征及其与地震的关系[J]. 地质力学学报, 2003, 9(1): 21-30. ZHANG Chun-shan, ZHANG Ye-cheng, WU Man-lu. Study on relationship between earthquake and hydro-geochemistry of groundwater in southern part of North-South earthquake belt in China[J]. Journal of Geomechanics, 2003, 9(1): 21-30 (in Chinese). [45] Fournier R O, Rowe J J. The deposition of silica in hot springs[J]. Bulletin Volcanologique, 1966, 29(1): 585-587. [46] Li B, Shi Z M, Wang G C, et al. Earthquake-related hydrochemical changes in thermal springs in the Xianshuihe fault zone, Western China[J]. Journal of Hydrology, 2019, 579: 124175. [47] 潘明, 吕勇, 郝彦珍, 等. 云南昌宁玉地里温泉水文地球化学特征及形成模式[J]. 地球与环境, 2015, 43(1): 98-103. PAN Ming, LÜ Yong, HAO Yan-zhen, et al. Hydrological geochemistry characteristics and genetic mode of Yudili hot springy in Changning, Yunnan Province China[J]. Earth and Environment, 2015, 43(1): 98-103 (in Chinese). [48] Wang C Y, Manga M. Hydrologic responses to earthquakes and a general metric[J]. Geofluids, 2010, 10(1-2): 206-216. [49] Claesson L, Skelton A, Graham C, et al. The timescale and mechanisms of fault sealing and water-rock interaction after an earthquake[J]. Geofluids, 2007, 7: 427-440. [50] Cox S C, Menzies C D, Sutherland R, et al. Changes in hot spring temperature and hydrogeology of the Alpine Fault hanging wall, New Zealand, induced by distal South Island earthquakes[J]. Geofluids, 2015, 15(1-2): 216-239. [51] Ranjram M, Gleeson T, Luijendijk E. Is the permeability of crystalline rock in the shallow crust related to depth, lithology or tectonic setting?[J]. Geofluids, 2015, 15(1-2): 106-119. [52] 马瑾. 从“是否存在有助于预报的地震先兆”说起[J]. 科学通报, 2016, 61(4): 409-414. MA Jin. On “whether earthquake precursors help for prediction do exist”[J]. Chinese Science Bulletin, 2016, 61(4): 409-414 (in Chinese). [53] Toutain J P, Munoz M, Poitrasson F, et al. Springwater chloride ion anomaly prior to a ML=5.2 Pyrenean earthquake[J]. Earth and Planetary Science Letters, 1997, 149(1-4): 113-119. [54] Geller R, Jackson D D, Kagan Y Y, et al. Earthquakes cannot be predicted[J]. Science, 1996, 275(5306): 1616. [55] Kennedy B M, Kharaka Y K, Evans W C, et al. Mantle fluids in the San Andreas fault system, California [J]. Science, 1997, 278: 1278-1281. |