[1] Hoke L, Lamb S, Hilton D R, et al. Southern limit of mantle-derived geothermal helium emissions in Tibet: Implications for lithospheric structure[J]. Earth and Planetary Science Letters, 2000, 180(3): 297-308. [2] Italiano F, Martinelli G, Nuccio P M. Anomalies of mantle-derived helium during the 1997—1998 seismic swarm of Umbria-Marche, Italy[J]. Geophysical Research Letters, 2001, 28(5): 839-842. [3] Martinelli G. Previous, current, and future trends in research into earthquake precursors in geofluids[J]. Geosciences, 2020, 10(5): 189. [4] 李营, 陈志, 胡乐, 等. 流体地球化学进展及其在地震预测研究中的应用[J]. 科学通报, 2022, 67(13): 1404-1420. LI Ying, CHEN Zhi, HU Le, et al. Advances in seismic fluid geochemistry and its application in earthquake forecasting[J]. Chinese Science Bulletin, 2022, 67(13): 1404-1420 (in Chinese). [5] Skelton A, Andrén M, Kristmannsdóttir H, et al. Changes in groundwater chemistry before two consecutive earthquakes in Iceland[J]. Nature Geoscience, 2014, 7(10): 752-756. [6] Zhou H, Zhou X, Su H, et al. Hydrochemical characteristics of earthquake-related thermal springs along the Weixi-Qiaohou fault, southeast Tibet Plateau[J]. Water, 2022, 14(1): 132. [7] Song S R, Chen Y L, Liu C M, et al. Hydrochemical changes in spring waters in Taiwan: Implications for evaluating sites for earthquake precursory monitoring[J]. Terrestrial Atmospheric and Oceanic Sciences, 2005, 16(4): 745-762. [8] Zhou X C, Yan Y C, Fang W Y, et al. Short-term seismic precursor anomalies of hydrogen concentration in Luojishan hot spring bubbling gas, eastern Tibetan Plateau[J]. Frontiers in Earth Science, 2021, 8: 586279. [9] Pierotti L, Botti F, Bracaloni S, et al. Hydrogeochemistry of Magra Valley (Italy) aquifers: Geochemical background of an area investigated for seismic precursors[M]//Proceedings of the 14th International Symposium on Water-Rock Interaction (WRI), Avignon, FRANCE, F 2013, Jun 9-14, 2013. [10] Poitrasson F, Dundas S H, Toutain J P, et al. Earthquake-related elemental and isotopic lead anomaly in a springwater[J]. Earth and Planetary Science Letters, 1999, 169(3-4): 269-276. [11] Gori F, Barberio M D. Hydrogeochemical changes before and during the 2019 Benevento seismic swarm in central-southern Italy[J]. Journal of Hydrology, 2022, 604: 127250. [12] Zhang L, Guo L S, Zhou X C, et al. Temporal variations in stable isotopes and synchronous earthquake-related changes in hot springs[J]. Journal of Hydrology, 2021, 599: 126316. [13] 邵俊杰, 李营, 孙凤霞, 等. 水—岩反应过程中离子浓度变化特征实验研究及其对地震异常成因的启示[J]. 地震研究, 2022, 45(2): 187-198. SHAO Jun-jie, LI Ying, SUN Feng-xia, et al. Experimental study of the characteristics of ion concentration changes during water-rock reaction and its implication to the formation of seismic anomalies[J]. Journal of Seismological Research, 2022, 45(2): 187-198 (in Chinese). [14] Li C H, Zhou X C, Yan Y C, et al. Hydrogeochemical characteristics of hot springs and their short-term seismic precursor anomalies along the Xiaojiang fault zone, southeast Tibet Plateau[J]. Water, 2021, 13(19): 2638. [15] Wang B, Zhou X C, Zhou Y S, et al. Hydrogeochemistry and precursory anomalies in thermal springs of Fujian (southeastern China) associated with earthquakes in the Taiwan strait[J]. Water, 2021, 13(24): 3523. [16] Yan Y C, Zhang Z C, Zhou X C, et al. Geochemical characteristics of hot springs in active fault zones within the northern Sichuan-Yunnan block: Geochemical evidence for tectonic activity[J]. Journal of Hydrology, 2024, 635: 131179. [17] Luo Z B, Zhou X C, He M, et al. Earthquakes evoked by lower crustal flow: Evidence from hot spring geochemistry in Lijiang-Xiaojinhe fault[J]. Journal of Hydrology, 2023, 619(2): 129334. [18] Trenberth K, Smith L, Qian T T, et al. Estimates of the global water budget and its annual cycle using observational and model data[J]. Journal of Hydrometeorology, 2007, 8(4): 758-769. [19] Tapponnier P, Peltzer G, Le Dain A Y, et al. Propagating extrusion tectonics in Asia: New insights from simple experiments with plasticine[J]. Geology, 1982, 10(12): 611-616. [20] Tapponnier P, Lacassin R, Leloup P H, et al. The Ailao Shan/Red River metamorphic belt: Tertiary left-lateral shear between Indochina and south China[J]. Nature, 1990, 343(6257): 431-437. [21] Ratschbacher L, Frisch W, Linzer H G, et al. Lateral extrusion in the eastern Alps, Part 2: Structural analysis[J]. Tectonics, 1991, 10(2): 257-271. [22] 许志琴, 李海兵, 唐哲民, 等. 大型走滑断裂对青藏高原地体构架的改造[J]. 岩石学报, 2011, 27(11): 3157-3170. XU Zhi-qin, LI Hai-bing, TANG Zhe-min, et al. The transformation of the terrain structures of the Tibet Plateau through large-scale strike-slip faults[J]. Acta Petrologica Sinica, 2011, 27(11): 3157-3170 (in Chinese). [23] Simons W J F, Socquet A, Vigny C, et al. A decade of GPS in Southeast Asia: Resolving Sundaland motion and boundaries[J]. Journal of Geophysical Research: Solid Earth, 2007, 112(B6): B06420. [24] Tingay M, Morley C, King R, et al. Present-day stress field of Southeast Asia[J]. Tectonophysics, 2010, 482(1-4): 92-104. [25] 王洋, 王岳军, 张培震, 等. 青藏高原东南缘断裂体系新生代构造演化[J]. 中国科学: 地球科学, 2022, 52(5): 777-802. WANG Yang, WANG Yue-jun, ZHANG Pei-zhen. Cenozoic tectonic evolution of regional fault systems in the SE Tibetan Plateau[J]. Science China Earth Sciences, 2022, 52(5): 777-802 (in Chinese). [26] 季建清, 钟大赉, 张连生. 青藏高原东南部新生代挤出块体西边界[J]. 科学通报, 2000, 45(2): 128-134. JI Jian-qing, ZHONG Da-lai, ZHANG Lian-sheng. The western boundary of extrusion blocks in the southeastern Tibetan Plateau[J]. Chinese Science Bulletin, 2000, 45(2): 128-134. [27] 尹福光, 孙志明, 胡世华. 中国西南三江地质图及说明书[M]. 北京: 地质出版社, 2014. YIN Fu-guang, SUN Zhi-ming, HU Shi-hua. Geological maps and brochures of the three rivers in southwest China[M]. Beijing: Geological Publishing House, 2014 (in Chinese). [28] 徐锡伟, 闻学泽, 郑荣章, 等. 川滇地区活动块体最新构造变动样式及其动力来源[J]. 中国科学(D辑), 2003, 33(S1): 151-162. XU Xi-wei, WEN Xue-ze, ZHENG Rong-zhang, et al. The latest tectonic change patterns and power sources of active blocks in Sichuan-Yunnan area[J]. Science in China (Series D), 2003, 33(S1): 151-162 (in Chinese). [29] 李广, 章新平, 张新主, 等. 云南腾冲地区大气降水中氢氧稳定同位素特征[J]. 长江流域资源与环境, 2013, 22(11): 1458-1465. LI Guang, ZHANG Xin-ping, ZHANG Xin-zhu, et al. Stable hydrogen and oxygen isotopes characteristics of atmospheric precipitation from Tengchong, Yunnan[J]. Rescources and Environment in the Yangtze Basin, 2013, 22(11): 1458-1465 (in Chinese). [30] Wang M, Zhou X, Liu Y, et al. Major, trace and rare earth elements geochemistry of geothermal waters from the Rehai high-temperature geothermal field in Tengchong of China[J]. Applied Geochemistry, 2020, 119: 104639. [31] He P, Zhang H R, Li S H, et al. Geological and hydrochemical controls on water chemistry and stable isotopes of hot springs in the Three Parallel Rivers Region, southeast Tibetan Plateau: The genesis of geothermal waters[J]. Science of the Total Environment, 2024, 906: 167648. [32] Craig H. Isotopic variations in meteoric waters[J]. Science, 1961, 133(346): 1702-1703. [33] Tan H B, Zhang Y F, Zhang W J, et al. Understanding the circulation of geothermal waters in the Tibetan Plateau using oxygen and hydrogen stable isotopes[J]. Applied Geochemistry, 2014, 51: 23-32. [34] Shoedarto R M, Tada Y, Kashiwaya K, et al. Specifying recharge zones and mechanisms of the transitional geothermal field through hydrogen and oxygen isotope analyses with consideration of water-rock interaction[J]. Geothermics, 2020, 86: 101797. [35] Froehlich K, Kralik M, Papesch W, et al. Deuterium excess in precipitation of Alpine regions-moisture recycling[J]. Isotopes in Environmental and Health Studies, 2008, 44(1): 61-70. [36] Li J, Pang Z H. Environmental isotopes in CO2 geological sequestration[J]. Greenhouse Gases: Science and Technology, 2015, 5(4): 374-388. [37] Dansgaard W. Stable isotopes in precipitation[J]. Tellus, 1964, 16(4): 436-468. [38] Yao T D, Masson-Delmotte V, Gao J, et al. A review of climatic controls on δ18O in precipitation over the Tibetan Plateau: Observations and simulations[J]. Reviews of Geophysics, 2013, 51(4): 525-548. [39] Wang L H, Liu W J, Xu Z F, et al. Water sources and recharge mechanisms of the Yarlung Zangbo River in the Tibetan Plateau: Constraints from hydrogen and oxygen stable isotopes[J]. Journal of Hydrology, 2022, 614: 128585. [40] Wang Y X, Li P, Guo Q H, et al. Environmental biogeochemistry of high arsenic geothermal fluids[J]. Applied Geochemistry, 2018, 97: 81-92. [41] Pérez N M, Hernández P A, Igarashi G, et al. Searching and detecting earthquake geochemical precursors in CO2-rich groundwaters from Galicia, Spain[J]. Geochemical Journal, 2008, 42(1): 75-83. [42] Poitrasson F, Dundas S H, Toutain J P, et al. Earthquake-related elemental and isotopic lead anomaly in a spring water[J]. Earth and Planetary Science Letters, 1999, 169(3-4): 269-276. [43] Armienta M A, De La Cruz-Reyna S, Gómez A, et al. Hydrogeochemical indicators of the Popocatepetl volcano activity[J]. Journal of Volcanology and Geothermal Research, 2008, 170(1-2): 35-50. [44] Sortino F, Giammanco S, Bonfanti P, et al. Stress-induced changes in hydrothermal gas discharges along active faults near Mt Etna volcano (Sicily, Italy)[J]. Tectonophysics, 2022, 836: 229388. [45] Thomas D. Geochemical precursors to seismic activity[J]. Pure and Applied Geophysics, 1988, 126(2-4): 241-266. [46] Andrén M, Stockmann G, Skelton A, et al. Coupling between mineral reactions, chemical changes in groundwater, and earthquakes in Iceland[J]. Journal of Geophysical Research: Solid Earth, 2016, 121(4): 2315-2337. [47] Horiguchi K, Ueki S, Sano Y, et al. Geographical distribution of helium isotope ratios in northeastern Japan[J]. Island Arc, 2010, 19(1): 60-70. [48] Boschetti T, Barbieri M, Barberio M D, et al. CO2 inflow and elements desorption prior to a seismic sequence, Amatrice-Norcia 2016, Italy[J]. Geochemistry Geophysics Geosystems, 2019, 20(5): 2303-2317. [49] Claesson L, Skelton A, Graham C, et al. Hydrogeochemical changes before and after a major earthquake[J]. Geology, 2004, 32(8): 641-644. [50] Hosono T, Yamada C, Manga M, et al. Stable isotopes show that earthquakes enhance permeability and release water from mountains[J]. Nature Communications, 2020, 11(1): 2776. |