地震 ›› 2025, Vol. 45 ›› Issue (3): 31-53.doi: 10.12196/j.issn.1000-3274.2025.03.003
杨逸文1, 高原1, 李心怡1,2
收稿日期:2024-12-10
修回日期:2025-02-19
出版日期:2025-07-31
发布日期:2025-10-23
通讯作者:
高原, 研究员。 E-mail: qzgyseis@163.com
作者简介:杨逸文(1999-), 女, 浙江温州人, 在读硕士研究生, 主要从事地震学研究。 E-mail: yangyw1013@163.com
基金资助:YANG Yi-wen1, GAO Yuan1, LI Xin-yi1,2
Received:2024-12-10
Revised:2025-02-19
Online:2025-07-31
Published:2025-10-23
摘要: 二级川滇块体地处青藏高原物质侧向挤出与一级华南块体接触的前缘地带, 受不同活动性质的边界断裂强烈控制, 构造运动和地震活动强烈。 川滇块体中部的丽江—小金河断裂和锦屏山断裂(统称为广义的丽江—小金河断裂)将川滇块体划分为川西北和滇中两个活动强度差异显著的次级块体。 断裂沿线地震活动多发, 其区域岩石圈结构与深部变形是青藏高原周缘岩石圈变形及侧向生长机制的重要科学问题。 地震各向异性在地球内部的广泛存在是理解岩石圈结构和变形的关键。 本文结合区域断裂分布、 地震活动、 地表变形、 应力场分布及深部结构特征, 通过对比近震S波分裂、 远震接收函数和远震SKS系列震相的S波分裂方法得到的各向异性特征, 综合体波、 面波及全波形各向异性层析成像结果, 获得不同深度和尺度的深部变形分布特征。 基于上地壳、 全地壳及岩石圈的变形特征分析, 探讨川滇块体中部的分层各向异性与变形耦合机制, 为深化青藏高原及其周缘地区演化机制和深部过程研究提供科学依据。
中图分类号:
杨逸文, 高原, 李心怡. 川滇块体中部岩石圈分层各向异性[J]. 地震, 2025, 45(3): 31-53.
YANG Yi-wen, GAO Yuan, LI Xin-yi. Lithospheric Layered Anisotropy in the Middle Part of Sichuan-Yunnan Block[J]. EARTHQUAKE, 2025, 45(3): 31-53.
| [1] Yin A, Harrison T M. Geologic evolution of the Himalayan-Tibetan Orogen[J]. Annual Review of Earth and Planetary Sciences, 2000, 28(1): 211-280. [2] Yin A. Cenozoic tectonic evolution of Asia: A preliminary synthesis[J]. Tectonophysics, 2010, 488(1-4): 293-325. [3] Tapponnier P, Peltzer G, Le Dain A Y, et al. Propagating extrusion tectonics in Asia: New insights from simple experiments with plasticine[J]. Geology, 1982, 10(12): 611-616. [4] Tapponnier P, Zhiqin X, Roger F, et al. Oblique stepwise rise and growth of the Tibet Plateau[J]. Science, 2001, 294(5547): 1671-1677. [5] Royden L H, Burchfiel B C, King R W, et al. Surface deformation and lower crustal flow in eastern Tibet[J]. Science, 1997, 276(5313): 788-790. [6] Clark M K, Royden L H. Topographic ooze: Building the eastern margin of Tibet by lower crustal flow[J]. Geology, 2000, 28(8): 703-706. [7] Griot D, Montagner J, Tapponnier P. Confrontation of mantle seismic anisotropy with two extreme models of strain, in central Asia[J]. Geophysical Research Letters, 1998, 25(9): 1447-1450. [8] Hubbard J, Shaw J H. Uplift of the Longmen Shan and Tibetan Plateau, and the 2008 Wenchuan (M=7.9) earthquake[J]. Nature, 2009, 458(7235): 194-197. [9] Bao X W, Sun X X, Xu M J, et al. Two crustal low-velocity channels beneath SE Tibet revealed by joint inversion of Rayleigh wave dispersion and receiver functions[J]. Earth and Planetary Science Letters, 2015, 415: 16-24. [10] Qiao L, Yao H J, Lai Y C, et al. Crustal structure of Southwest China and Northern Vietnam from ambient noise tomography: Implication for the large-scale material transport model in SE Tibet[J]. Tectonics, 2018, 37(5): 1492-1506. [11] Hua Y J, Zhang S X, Li M K, et al. A new geodynamic model related to seismicity beneath the southeastern margin of the Tibetan Plateau revealed by regional tomography[J]. Geophysical Journal International, 2018, 214(2): 933-951. [12] Bai D H, Unsworth M J, Meju M A, et al. Crustal deformation of the eastern Tibetan Plateau revealed by magnetotelluric imaging[J]. Nature Geoscience, 2010, 3(5): 358-362. [13] 王绪本, 高原, 王志, 等. 青藏高原东缘深部地球物理与大陆动力学研究进展[J]. 地球物理学报, 2017, 60(6): 2030-2037. WANG Xu-ben, GAO Yuan, WANG Zhi, et al. Research progress on deep geophysics and continental dynamics in Eastern Tibetan Plateau[J]. Chinese Journal of Geophysics, 2017, 60(6): 2030-2037 (in Chinese). [14] He X, Zhao L F, Xie X B, et al. Weak crust in Southeast Tibetan Plateau revealed by Lg-wave attenuation tomography: Implications for crustal material escape[J]. Journal of Geophysical Research: Solid Earth, 2021, 126(3): e2020JB020748. [15] Jiang G Z, Hu S B, Shi Y Z, et al. Terrestrial heat flow of continental China: Updated dataset and tectonic implications[J]. Tectonophysics, 2019, 753: 36-48. [16] Zhang Z Q, Gao Y. Crustal thicknesses and Poisson's ratios beneath the Chuxiong-Simao Basin in the Southeast Margin of the Tibetan Plateau[J]. Earth and Planetary Physics, 2019, 3(1): 69-84. [17] Wang Q, Niu F L, Gao Y, et al. Crustal structure and deformation beneath the NE margin of the Tibetan Plateau constrained by teleseismic receiver function data[J]. Geophysical Journal International, 2016, 204(1): 167-179. [18] Yao H J, van der Hilst R D, Montagner J P. Heterogeneity and anisotropy of the lithosphere of SE Tibet from surface wave array tomography[J]. Journal of Geophysical Research: Solid Earth, 2010, 115(B12): B12307. [19] Yang Y, Yao H J, Wu H X, et al. A new crustal shear-velocity model in Southwest China from joint seismological inversion and its implications for regional crustal dynamics[J]. Geophysical Journal International, 2020, 220(2): 1379-1393. [20] Li Y, Gao Y, Yao H J, et al. Low-velocity middle-and-lower crustal materials blocked by the Red Rriver Fault in the SE margin of the Tibetan Plateau[J]. Earth and Planetary Science Letters, 2024, 646: 118988. [21] Gao Y, Crampin S. Temporal variations of shear-wave splitting in field and laboratory studies in China[J]. Journal of Applied Geophysics, 2003, 54(3-4): 279-287. [22] Gao Y, Chen A G, Shi Y T, et al. Preliminary analysis of crustal shear-wave splitting in the Sanjiang lateral collision zone of the southeast margin of the Tibetan Plateau and its tectonic implications[J]. Geophysical Prospecting, 2019, 67(9): 2432-2449. [23] Crampin S, Gao Y. A review of techniques for measuring shear-wave splitting above small earthquakes[J]. Physics of the Earth and Planetary Interiors, 2006, 159(1-2): 1-14. [24] 王琼, 高原, 石玉涛. 青藏高原东南缘基于背景噪声的Rayleigh面波方位各向异性研究[J]. 地球物理学报, 2015, 58(11): 4068-4078. WANG Qiong, GAO Yuan, SHI Yu-tao, et al. Rayleigh wave azimuthal anisotropy on the southeastern front of the Tibetan Plateau from seismic ambient noise[J]. Chinese Journal of Geophysics, 2015, 58(11): 4068-4078 (in Chinese). [25] 张智奇, 姚华建, 杨妍. 青藏高原东南缘地壳上地幔三维S波速度结构及动力学意义[J]. 中国科学:地球科学, 2020, 50(9): 1242-1258. ZHANG Zhi-qi, YAO Hua-jian, YANG Yan. Shear wave velocity structure of the crust and upper mantle in Southeastern Tibet and its geodynamic implications[J]. Science China Earth Sciences, 2020, 50(9): 1242-1258 (in Chinese). [26] 郑斯华, 高原. 中国大陆岩石层的方位各向异性[J]. 地震学报, 1994, 16(2): 131-140. ZHENG Si-hua, GAO Yuan. Azimuthal anisotropy in lithosphere on the Chinese mainland from observations of SKS at CDSN[J]. Acta Seismologica Sinica, 1994, 16(2): 131-140 (in Chinese). [27] 王椿镛, 常利军, 丁志峰, 等. 中国大陆上地幔各向异性和壳幔变形模式[J]. 中国科学: 地球科学, 2014, 44(1): 98-110. WANG Chun-yong, CHANG Li-jun, DING Zhi-feng, et al. Upper mantle anisotropy and crust-mantle deformation pattern beneath the Chinese mainland[J]. Science China Earth Sciences, 2014, 44(1): 98-110 (in Chinese). [28] Huang Z C, Wang L S, Xu M J, et al. P wave anisotropic tomography of the SE Tibetan Plateau: Evidence for the crustal and upper-mantle deformations[J]. Journal of Geophysical Research: Solid Earth, 2018, 123(10): 8957-8978. [29] Lin Y P, Zhao L, Hung S H. Full-wave effects on shear wave splitting[J]. Geophysical Research Letters, 2014, 41(3): 799-804. [30] Lei J S, Zhao D P, Xu X W, et al. Is there a big mantle wedge under eastern Tibet?[J]. Physics of the Earth and Planetary Interiors, 2019, 292: 100-113. [31] 沈胜意, 高原, 刘同振. 剪切波分裂揭示的青藏高原东北缘分层各向异性形态: 从海原断裂至银川地堑[J]. 地球物理学报, 2022, 65(5): 1595-1611. SHEN Sheng-yi, GAO Yuan, LIU Tong-zhen. Two-layer anisotropy revealed by shear wave splitting beneath the NE margin of Tibetan Plateau: From Haiyuan fault to Yinchuan Garben[J]. Chinese Journal of Geophysics, 2022, 65(5): 1595-1611 (in Chinese). [32] Li Y, Gao Y. Rigid widths of active block boundary faults and crustal layered anisotropy in the intersection of faults Honghe and Xiaojiang in the SE margin of the Tibetan Plateau[J]. Geophysical Journal International, 2023, 235(2): 1504-1518. [33] 李长军, 甘卫军, 秦姗兰, 等. 青藏高原东南缘南段现今变形特征研究[J]. 地球物理学报, 2019, 62(12): 4540-4553. LI Zhang-jun, GAN Wei-jun, QIN Shan-lan, et al. Present-day deformation characteristics of the southeast borderland of the Tibetan Plateau[J]. Chinese Journal of Geophysics, 2019, 62(12): 4540-4553 (in Chinese). [34] 阚荣举, 张四昌, 晏凤桐, 等. 我国西南地区现代构造应力场与现代构造活动特征的探讨[J]. 地球物理学报, 1977, 20(2): 96-109. KAN Rong-ju, ZHANG Si-chang, YAN Feng-tong, et al. Present tectonic stress field and its relation to the characteristics of recent tectonic activity in southwestern China[J]. Chinese Journal of Geophysics, 1977, 20(2): 96-109 (in Chinese). [35] 张培震, 邓起东, 张国民, 等. 中国大陆的强震活动与活动地块[J]. 中国科学D辑: 地球科学, 2003, 33(S1): 12-20. ZHANG Pei-zhen, DENG Qi-dong, ZHANG Guo-min, et al. Strong earthquake activities and active blocks in China mainland[J]. Science in China Series D: Earth Sciences, 2003, 33(S1): 12-20 (in Chinese). [36] 葛肖虹. 川西盐源推覆构造的探讨[J]. 长春地质学院学报, 1984, 27(1): 36-43. GE Xiao-hong. A discussion on nappe structure in Yanyuan, West Sichuan[J]. Journal of Jilin University: Earth Science Edition, 1984, 27(1): 36-43 (in Chinese). [37] 吴贵灵, 祝成宇, 王国灿, 等. 青藏高原东南缘地貌边界性质的界定及其对高原东南缘扩展模式的启示[J]. 地震地质, 2019, 41(2): 281-299. WU Gui-ling, ZHU Cheng-yu, WANG Guo-can, et al. Demarcation of the geomorphological boundaries of southeastern Tibet: Implications for expansion mechanisms of the plateau edge[J]. Seismology and Geology, 2019, 41(2): 281-299 (in Chinese). [38] Zhang P Z, Shen Z K, Wang M, et al. Continuous deformation of the Tibetan Plateau from global positioning system data[J]. Geology, 2004, 32(9): 809-812. [39] Jin H L, Gao Y, Su X N, et al. Contemporary crustal tectonic movement in the southern Sichuan-Yunnan block based on dense GPS observation data[J]. Earth and Planetary Physics, 2019, 3(1): 53-61. [40] Wang M, Shen Z K. Present-day crustal deformation of continental China derived from GPS and its tectonic implications[J]. Journal of Geophysical Research: Solid Earth, 2020, 125(2): e2019JB018774. [41] Gan W J, Molnar P, Zhang P Z, et al. Initiation of clockwise rotation and eastward transport of southeastern Tibet inferred from deflected fault traces and GPS observations[J]. Geological Society of America Bulletin, 2022, 134(5-6): 1129-1142. [42] 田建慧, 高原. 川滇地区地壳应力场研究现状[J]. 地球物理学报, 2024, 67(9): 3436-3453. TIAN Jian-hui, GAO Yuan. Research actuality of crustal stress field in the Sichuan-Yunnan region[J]. Chinese Journal of Geophysics, 2024, 67(9): 3436-3453 (in Chinese). [43] Kreemer C, Blewitt G, Klein E C. A geodetic plate motion and global strain rate model[J]. Geochemistry, Geophysics, Geosystems, 2014, 15(10): 3849-3889. [44] Tian J H, Luo Y, Zhao L, et al. Regional stress field in Yunnan revealed by the focal mechanisms of moderate and small earthquakes[J]. Earth and Planetary Physics, 2019, 3(3): 243-252. [45] 盛书中, 胡晓辉, 王晓山, 等. 云南及邻区地壳应力场研究[J]. 地球物理学报, 2022, 65(9): 3252-3267. SHENG Shu-zhong, HU Xiao-hui, WANG Xiao-shan, et al. Study on the crustal stress field of Yunnan and its adjacent areas[J]. Chinese Journal of Geophysics, 2022, 65(9): 3252-3267 (in Chinese). [46] Shi Y T, Gao Y, Su Y J, et al. Shear-wave splitting beneath Yunnan area of Southwest China[J]. Earthquake Science, 2012, 25(1): 25-34. [47] Conrad C P, Behn M D, Silver P G. Global mantle flow and the development of seismic anisotropy: Differences between the oceanic and continental upper mantle[J]. Journal of Geophysical Research: Solid Earth, 2007, 112(B7): B07317. [48] Gao Y, Wu J, Fukao Y, et al. Shear wave splitting in the crust in North China: Stress, faults and tectonic implications[J]. Geophysical Journal International, 2011, 187(2): 642-654. [49] 高原, 石玉涛, 陈安国. 青藏高原东缘地震各向异性、 应力及汶川地震影响[J]. 科学通报, 2018, 63(19): 1934-1948. GAO Yuan, SHI Yu-tao, CHEN An-guo. Crustal seismic anisotropy and compressive stress in the eastern margin of the Tibetan Plateau and the influence of the MS8.0 Wenchuan earthquake[J]. Chinese Science Bulletin, 2018, 63(19): 1934-1948 (in Chinese). [50] Crampin S. Calculable fluid-rock interactions[J]. Journal of the Geological Society, 1999, 156(3): 501-514. [51] 石玉涛, 高原, 张永久, 等. 松潘—甘孜地块东部、 川滇地块北部与四川盆地西部的地壳剪切波分裂[J]. 地球物理学报, 2013, 56(2): 481-494. SHI Yu-tao, GAO Yuan, ZHANG Yong-jiu, et al. Shear-wave splitting in the crust in Eastern Songpan-Garzê Block, Sichuan-Yunnan Block and Western Sichuan Basin[J]. Chinese Journal of Geophysics, 2013, 56(2): 481-494 (in Chinese). [52] 太龄雪, 高原, 刘庚, 等. 利用中国地震科学台阵研究青藏高原东南缘地壳各向异性: 第一期观测资料的剪切波分裂特征[J]. 地球物理学报, 2015, 58(11): 4079-4091. TAI Ling-xue, GAO Yuan, LIU Geng, et al. Crustal seismic anisotropy in the southeastern margin of Tibetan Plateau by ChinArray data: Shear-wave splitting from temporary observations of the first phase[J]. Chinese Journal of Geophysics, 2015, 58(11): 4079-4091 (in Chinese). [53] 张艺, 高原. 中国地震科学台阵两期观测资料近场记录揭示的南北地震带地壳剪切波分裂特征[J]. 地球物理学报, 2017, 60(6): 2181-2199. ZHANG Yi, GAO Yuan. The characteristics of crustal shear-wave splitting in North-South seismic zone revealed by near field recordings of two observation periods of ChinArray[J]. Chinese Journal of Geophysics, 2017, 60(6): 2181-2199 (in Chinese). [54] 高原, 石玉涛, 王琼. 青藏高原东南缘地震各向异性及其深部构造意义[J]. 地球物理学报, 2020, 63(3): 802-816. GAO Yuan, SHI Yu-tao, WANG Qiong. Seismic anisotropy in the southeastern margin of the Tibetan Plateau and its deep tectonic significances[J]. Chinese Journal of Geophysics, 2020, 63(3): 802-816 (in Chinese). [55] Lev E, Long M D, van der Hilst R D. Seismic anisotropy in Eastern Tibet from shear wave splitting reveals changes in lithospheric deformation[J]. Earth and Planetary Science Letters, 2006, 251(3-4): 293-304. [56] 常利军, 王椿镛, 丁志峰. 四川及邻区上地幔各向异性研究[J]. 中国科学D辑: 地球科学, 2008, 38(12): 1589-1899. CANG Li-jun, WANG Chun-yong, DING Zhi-feng. Seismic anisotropy of upper mantle in Sichuan and adjacent regions[J]. Science in China Series D: Earth Sciences, 2008, 38(12): 1589-1899. [57] 常利军, 丁志峰, 王椿镛. 南北构造带南段上地幔各向异性特征[J]. 地球物理学报, 2015, 58(11): 4052-4067. CHANG Li-jun, DING Zhi-feng, WANG Chun-yong. Upper mantle anisotropy beneath the southern segment of North-South tectonic belt, China[J]. Chinese Journal of Geophysics, 2015, 58(11): 4052-4067 (in Chinese). [58] Huang Z C, Wang L S, Xu M J, et al. Teleseismic shear-wave splitting in SE Tibet: Insight into complex crust and upper-mantle deformation[J]. Earth and Planetary Science Letters, 2015, 432: 354-362. [59] Li X, Gao Y. Spatially-varied crustal deformation indicating seismicity at faults intersection in the SE margin of the Tibetan Plateau: Evidence of S-wave splitting from microseismic identification[J]. Tectonophysics, 2024, 890: 230509. [60] 高原, 王琼, 赵博, 等. 龙门山断裂带中南段的一个破裂空段芦山地震的震后效应[J]. 中国科学: 地球科学, 2013, 43(6): 1038-1046. GAO Yuan, WANG Qiong, ZHAO Bo, et al. A rupture blank zone in middle south part of Longmenshan Faults: Effect after Lushan MS7.0 earthquake of 20 April 2013 in Sichuan, China[J]. Science China Earth Sciences, 2013, 43(6): 1038-1046 (in Chinese). [61] 陈安国, 高原, 石玉涛. 龙门山断裂带域上地壳各向异性及其变化[J]. 地球物理学报, 2019, 62(8): 2959-2981. CHEN An-guo, GAO Yuan, SHI Yu-tao. Seismic anisotropy and its variation in the upper crust beneath the Longmen Shan fault zone[J]. Chinese Journal of Geophysics, 2019, 62(8): 2959-2981 (in Chinese). [62] 刘庚, 吴晶, 周聪, 等. 安宁河—则木河断裂带及邻区中上地壳各向异性及其含义[J]. 地球物理学报, 2023, 66(11): 4533-4551. LIU Geng, WU Jing, ZHOU Cong, et al. Anisotropy of middle-upper crust in the Anninghe-Zemuhe fault zone and its adjacent area and its implications[J]. Chinese Journal of Geophysics, 2023, 66(11): 4533-4551 (in Chinese). [63] Bianchi I, Park J, Piana Agostinetti N, et al. Mapping seismic anisotropy using harmonic decomposition of receiver functions: An application to Northern Apennines, Italy[J]. Journal of Geophysical Research: Solid Earth, 2010, 115(B12): B12317. [64] Savage M K. Lower crustal anisotropy or dipping boundaries? Effects on receiver functions and a case study in New Zealand[J]. Journal of Geophysical Research: Solid Earth, 1998, 103(B7): 15069-15087. [65] McNamara D E, Owens T J. Azimuthal shear wave velocity anisotropy in the basin and range province using moho Ps converted phases[J]. Journal of Geophysical Research: Solid Earth, 1993, 98(B7): 12003-12017. [66] Liu H F, Niu F L. Estimating crustal seismic anisotropy with a joint analysis of radial and transverse receiver function data: Estimating crustal seismic anisotropy[J]. Geophysical Journal International, 2012, 188(1): 144-164. [67]Rümpker G, Kaviani A, Latifi K. Ps-splitting analysis for multilayered anisotropic media by azimuthal stacking and layer stripping[J]. Geophysical Journal International, 2014, 199(1): 146-163. [68] 李永华, 吴庆举, 田小波, 等. 用接收函数方法研究云南及其邻区地壳上地幔结构[J]. 地球物理学报, 2009, 52(1): 67-80. LI Yong-hua, WU Qing-ju, TIAN Xiao-bo, et al. Crustal structure in the Yunnan region determined by modeling receiver functions[J]. Chinese Journal of Geophysics, 2009, 52(1): 67-80 (in Chinese). [69] Shi Y T, Gao Y, Zhang H S, et al. Crustal azimuthal anisotropy in the lateral collision zone of the SE margin of the Tibetan Plateau and its tectonic implications[J]. Geophysical Journal International, 2023, 234(1): 1-11. [70] 王椿镛, 杨文采, 吴建平, 等. 南北构造带岩石圈结构与地震的研究[J]. 地球物理学报, 2015, 58(11): 3867-3901. WANG Chun-yong, YANG Wen-cai, WU Jian-ping, et al. Study on the lithospheric structure and earthquakes in North-South Tectonic Belt[J]. Chinese Journal of Geophysics, 2015, 58(11): 3867-3901 (in Chinese). [71] 朱介寿, 王绪本, 杨宜海, 等. 青藏高原东缘的地壳流及动力过程[J]. 地球物理学报, 2017, 60(6): 2038-2057. ZHU Jie-shou, WANG Xu-ben, YANG Yi-hai, et al. The crustal flow beneath the eastern margin of the Tibetan Plateau and its process of dynamics[J]. Chinese Journal of Geophysics, 2017, 60(6): 2038-2057 (in Chinese). [72] Wang W L, Wu J P, Fang L H, et al. Crustal thickness and Poisson's ratio in southwest China based on data from dense seismic arrays[J]. Journal of Geophysical Research: Solid Earth, 2017, 122(9): 7219-7235. [73] Chen Y, Zhang Z J, Sun C Q, et al. Crustal anisotropy from Moho converted Ps wave splitting analysis and geodynamic implications beneath the eastern margin of Tibet and surrounding regions[J]. Gondwana Research, 2013, 24(3-4): 946-957. [74] 杨妍. 川滇地区地壳速度结构及方位各向异性的联合反演研究[D]. 合肥: 中国科学技术大学, 2019. YANG Yan. Joint inversion for crustal structure and azimuthal anisotropy: Application to the Sichuan-Yunnan region, SW China[D]. Hefei: University of Science and Technology of China, 2019 (in Chinese). [75] Zheng T, Gao S S, Ding Z F, et al. Crustal azimuthal anisotropy and deformation beneath the northeastern Tibetan Plateau and adjacent areas: Insights from receiver function analysis[J]. Tectonophysics, 2021, 816: 229014. [76] Huang P X, Gao Y, Xue B. Advances in the deep tectonics and seismic anisotropy of the Lijiang-Xiaojinhe fault zone in the Sichuan-Yunnan Block, Southwestern China[J]. Earthquake Research Advances, 2022, 2(1): 100116. [77] Yang Y H, Zhu L B, Su Y J, et al. Crustal anisotropy estimated by splitting of Ps-converted waves on seismogram and an application to SE Tibetan Plateau[J]. Journal of Asian Earth Sciences, 2015, 106: 216-228. [78] 谢富仁, 崔效锋, 赵建涛, 等. 中国大陆及邻区现代构造应力场分区[J]. 地球物理学报, 2004, 47(4): 654-662. XIE Fu-ren, CUI Xiao-feng, ZHAO Jian-tao, et al. Regional division of the recent tectonic stress field in China and adjacent areas[J]. Chinese Journal of Geophysics, 2004, 47(4): 654-662 (in Chinese). [79] Cai Y, Wu J P, Fang L H, et al. Crustal anisotropy and deformation of the southeastern margin of the Tibetan Plateau revealed by Pms splitting[J]. Journal of Asian Earth Sciences, 2016, 121: 120-126. [80] Zheng T, Ding Z F, Ning J Y, et al. Crustal azimuthal anisotropy beneath the Southeastern Tibetan Plateau and its geodynamic implications[J]. Journal of Geophysical Research: Solid Earth, 2018, 123(11): 9733-9749. [81] Tian X B, Liu Z, Si S K, et al. The crustal thickness of NE Tibet and its implication for crustal shortening[J]. Tectonophysics, 2014, 634: 198-207. [82] Kong F S, Wu J, Liu K H, et al. Crustal anisotropy and ductile flow beneath the eastern Tibetan Plateau and adjacent areas[J]. Earth and Planetary Science Letters, 2016, 442: 72-79. [83] Han C R, Xu M J, Huang Z C, et al. Layered crustal anisotropy and deformation in the SE Tibetan Plateau revealed by Markov-Chain-Monte-Carlo inversion of receiver functions[J]. Physics of the Earth and Planetary Interiors, 2020, 306: 106522. [84] Sun Y, Niu F L, Liu H F, et al. Crustal structure and deformation of the SE Tibetan Plateau revealed by receiver function data[J]. Earth and Planetary Science Letters, 2012, 349-350: 186-197. [85] 郭希, 陈赟, 李士东, 等. 峨眉山大火成岩省地壳横波速度结构特征及其动力学意义[J]. 地球物理学报, 2017, 60(9): 3338-3351. GUO Xi, CHEN Yun, LI Shi-dong, et al. Crustal shear-wave velocity structure and its geodynamic implications beneath the Emeishan large igneous province[J]. Chinese Journal of Geophysics, 2017, 60(9): 3338-3351 (in Chinese). [86] Silver P G, Savage M K. The interpretation of shear-wave splitting parameters in the presence of two anisotropic layers[J]. Geophysical Journal International, 1994, 119(3): 949-963. [87] Silver P G, Chan W W. Shear wave splitting and subcontinental mantle deformation[J]. Journal of Geophysical Research: Solid Earth, 1991, 96(B10): 16429-16454. [88] 常利军, 王椿镛, 丁志峰. 云南地区SKS波分裂研究[J]. 地球物理学报, 2006, 49(1): 197-204. CHANG Li-jun, WANG Chun-yong, DING Zhi-feng. A study on SKS splitting beneath the Yunnan region[J]. Chinese Journal of Geophysics, 2006, 49(1): 197-204 (in Chinese). [89] 田建慧. 川滇地区构造应力场与关键构造域三维方位地震各向异性[D]. 北京: 中国地震局地球物理研究所, 2024. TIAN Jian-hui. The tectonic stress field in Sichuan-Yunnan region and the 3D azimuthal seismic anisotropy in key tectonic domain[D]. Beijing: Institute of Geophysics, China Earthquake Administration, 2024 (in Chinese). [90] Wu J, Zhang Z J, Kong F S, et al. Complex seismic anisotropy beneath western Tibet and its geodynamic implications[J]. Earth and Planetary Science Letters, 2015, 413: 167-175. [91] 常利军, 丁志峰, 王椿镛. 南北构造带北段上地幔各向异性特征[J]. 地球物理学报, 2016, 59(11): 4035-4047. CHANG Li-jun, DING Zhi-feng, WANG Chun-yong. Upper mantle anisotropy beneath the northern segment of the north-south tectonic belt in China[J]. Chinese Journal of Geophysics, 2016, 59(11): 4035-4047 (in Chinese). [92] Aki K, Lee W H K. Determination of three-dimensional velocity anomalies under a seismic array using first P arrival times from local earthquakes: 1. A homogeneous initial model[J]. Journal of Geophysical Research: Solid Earth, 1976, 81(23): 4381-4399. [93]Woodhouse J H, Dziewonski A M. Mapping the upper mantle: Three-dimensional modeling of earth structure by inversion of seismic waveforms[J]. Journal of Geophysical Research: Solid Earth, 1984, 89(B7): 5953-5986. [94] van der Hilst R, Engdahl R, Spakman W, et al. Tomographic imaging of subducted lithosphere below northwest Pacific Island arcs[J]. Nature, 1991, 353(6339): 37-43. [95] 黄周传. 地震体波速度与各向异性层析成像研究进展[J]. 地球与行星物理论评, 2022, 53(6): 656-679. HUANG Zhou-chuan. Review on body-wave tomography for seismic velocity and anisotropy[J]. Reviews of Geophysics and Planetary Physics, 2022, 53(6): 656-679 (in Chinese). [96] Rawlinson N, Sambridge M. Wave front evolution in strongly heterogeneous layered media using the fast-marching method[J]. Geophysical Journal International, 2004, 156(3): 631-647. [97] Tanimoto T, Anderson D L. Mapping convection in the mantle[J]. Geophysical Research Letters, 1984, 11(4): 287-290. [98] Tanimoto T, Anderson D L. Lateral heterogeneity and azimuthal anisotropy of the upper mantle: Love and Rayleigh waves 100—250 s[J]. Journal of Geophysical Research: Solid Earth, 1985, 90(B2): 1842-1858. [99] Lei J S, Li Y, Xie F R, et al. Pn anisotropic tomography and dynamics under eastern Tibetan Plateau[J]. Journal of Geophysical Research: Solid Earth, 2014, 119(3): 2174-2198. [100] Zhao D P, Yu S, Liu X. Seismic anisotropy tomography: New insight into subduction dynamics[J]. Gondwana Research, 2016, 33: 24-43. [101] Liu C M, Yao H J, Yang H Y, et al. Direct inversion for three-dimensional shear wave speed azimuthal anisotropy based on surface wave ray tracing: methodology and application to Yunnan, Southwest China[J]. Journal of Geophysical Research: Solid Earth, 2019, 124(11): 11394-11413. [102] Hu N, Li Y H, Xu L X. Crustal seismic anisotropy of the Northeastern Tibetan Plateau and the adjacent areas from shear-wave splitting measurements[J]. Geophysical Journal International, 2020, 220(3): 1491-1503. [103] Weaver R, Lobkis O. On the emergence of the Green's function in the correlations of a diffuse field: Pulse-echo using thermal phonons[J]. Ultrasonics, 2002, 40(1-8): 435-439. [104] Bodin T, Sambridge M. Seismic tomography with the reversible jump algorithm[J]. Geophysical Journal International, 2009, 178(3): 1411-1436. [105] Yao H J, Beghein C, van der Hilst R D. Surface wave array tomography in SE Tibet from ambient seismic noise and two-station analysis—Ⅱ. Crustal and upper-mantle structure[J]. Geophysical Journal International, 2008, 173(1): 205-219. [106] Yao H J. Lithospheric structure and deformation in SE Tibet revealed by ambient noise and earthquake surface wave tomography: Recent advances and perspectives[J]. Earthquake Science, 2012, 25(5): 371-383. [107] Bao X W, Song X D, Eaton D W, et al. Episodic lithospheric deformation in eastern Tibet inferred from seismic anisotropy[J]. Geophysical Research Letters, 2020, 47(3): e2019GL085721. [108] Li M K, Zhang S X, Wang F, et al. Crustal and upper-mantle structure of the southeastern Tibetan Plateau from joint analysis of surface wave dispersion and receiver functions[J]. Journal of Asian Earth Sciences, 2016, 117: 52-63. [109] Fu Y V, Gao Y, Li A B, et al. Lithospheric structure of the southeastern margin of the Tibetan Plateau from Rayleigh wave tomography[J]. Journal of Geophysical Research: Solid Earth, 2017, 122(6): 4631-4644. [110] Huang Z, Wang P, Xu M, et al. Mantle structure and dynamics beneath SE Tibet revealed by new seismic images[J]. Earth and Planetary Science Letters, 2015, 411(1): 100-111. [111] Zhang B, Zhang S X, Wu T F, et al. Upper crustal anisotropy from local shear-wave splitting and crust-mantle coupling of Yunnan, SE margin of Tibetan Plateau[J]. Geodesy and Geodynamics, 2018, 9(4): 302-311. [112] Huang Z C, Wang L S, Xu M J, et al. P wave anisotropic tomography of the SE Tibetan Plateau: evidence for the crustal and upper-mantle deformations[J]. Journal of Geophysical Research: Solid Earth, 2018, 123(10): 8957-8978. [113] Tian J H, Gao Y, Li Y. Crustal 3-D S-wave velocity and azimuthal anisotropy in the Sanjiang lateral collision zone in the SE margin of the Tibetan Plateau[J]. Journal of Geophysical Research: Solid Earth, 2024, 129(9): e2024JB028880. [114] Han C R, Huang Z C, Hao S J, et al. Restricted lithospheric extrusion in the SE Tibetan Plateau: Evidence from anisotropic Rayleigh-wave tomography[J]. Earth and Planetary Science Letters, 2022, 598: 117837. [115] Liu L S, Chang K, Yang D H, et al. Velocity and azimuthal anisotropy structures beneath the Dianzhong Block and its vicinity, SE Tibetan Plateau, revealed by eikonal equation-based traveltime tomography[J]. Tectonophysics, 2022, 839: 229525. [116] 易桂喜, 姚华建, 朱介寿, 等. 用Rayleigh面波方位各向异性研究中国大陆岩石圈形变特征[J]. 地球物理学报, 2010, 53(2): 256-268. YI Gui-xi, YAO Hua-jian, ZHU Jie-shou, et al. Lithospheric deformation of continental China from Rayleigh wave azimuthal anisotropy[J]. Chinese Journal of Geophysics, 2010, 53(2): 256-268 (in Chinese). [117] Tian F F, Lei J S, Xu X W. Teleseismic P-wave crustal tomography of the Weifang segment on the Tanlu fault zone: A case study based on short-period dense seismic array experiment[J]. Physics of the Earth and Planetary Interiors, 2020, 306: 106521. [118]Biondi B, Symes W W. Angle-domain common-image gathers for migration velocity analysis by wavefield-continuation imaging[J]. Geophysics, 2004, 69(5): 1283-1298. [119] Zhu X H, McMechan G A. Estimation of a two-dimensional seismic compressional wave velocity distribution by iterative tomographic imaging[J]. International Journal of Imaging Systems and Technology, 1989, 1(1): 13-17. [120] Tarantola A. Inversion of seismic reflection data in the acoustic approximation[J]. Geophysics, 1984, 49(8): 1259-1266. [121] Pratt R G, Shin C, Hicks G J. Gauss-Newton and full Newton methods in frequency-space seismic waveform inversion[J]. Geophysical Journal International, 1998, 133(2): 341-362. [122] Tape C, Liu Q Y, Maggi A, et al. Adjoint tomography of the Southern California crust[J]. Science, 2009, 325(5943): 988-992. [123] Sales de Andrade E, Liu Q Y. Fast computation of global sensitivity kernel database based on spectral-element simulations[J]. Pure and Applied Geophysics, 2017, 174(7): 2733-2761. [124] Chen M, Huang H, Yao H, et al. Low wave speed zones in the crust beneath SE Tibet revealed by ambient noise adjoint tomography[J]. Geophysical Research Letters, 2014, 41(2): 334-340. [125] Lin Y, Zhao L. Upper-mantle anisotropy in the southeastern margin of Tibetan Plateau revealed by full-wave SKS splitting intensity tomography[J]. Journal of Geophysical Research: Solid Earth, 2024, 129(3): e2023JB027629. [126] Zhu H J, Tromp J. Mapping tectonic deformation in the crust and upper mantle beneath Europe and the North Atlantic Ocean[J]. Science, 2013, 341(6148): 871-875. [127] 董兴朋, 杨顶辉, 蒙伟娟. 青藏高原东北缘基于W2度量的全波形成像[J]. 地球物理学报, 2024, 67(3): 843-854. DONG Xing-peng, YANG Ding-hui, MENG Wei-juan. Full-waveform tomography of the northeastern Tibetan Plateau based on the quadratic Wasserstein-metric[J]. Chinese Journal of Geophysics, 2024, 67(3): 843-854 (in Chinese). [128] Shen S Y, Gao Y. Research progress on layered seismic anisotropy-A review[J]. Earthquake Research Advances, 2021, 1(1): 4-9. [129] 王椿镛, 常利军, 吕智勇, 等. 青藏高原东部上地幔各向异性及相关的壳幔耦合型式[J]. 中国科学: D辑, 2007,37(4): 495-503. WANG Chun-yong, CHANG Li-jun, LÜ Zhi-yong, et al. Upper mantle anisotropy and related crust-mantle coupling patterns in the eastern Tibetan Plateau[J]. Science in China (Series D), 2007, 37(4): 495-503 (in Chinese). [130] 姚华建, 罗松, 李成, 等. 基于面波走时的三维结构面波直接成像: 方法综述与应用[J]. 地球与行星物理论评(中英文), 2023, 54(3): 231-251. YAO Hua-jian, LUO Song, LI Cheng, et al. Direct surface wave tomography for three-dimensional structure based on surface wave traveltimes: Methodology review and applications[J]. Reviews of Geophysics and Planetary Physics, 2023, 54(3): 231-251 (in Chinese). [131] Sun Y, Liu J X, Zhou K P, et al. Crustal structure and deformation under the Longmenshan and its surroundings revealed by receiver function data[J]. Physics of the Earth and Planetary Interiors, 2015, 244: 11-22. [132] 韩明, 李建有, 徐晓雅, 等. 按方位叠加接收函数分析青藏高原东南缘的地壳各向异性[J]. 地球物理学报, 2017, 60(12): 4537-4556. HAN Ming, LI Jian-you, XU Xiao-ya, et al. Analysis for crustal anisotropy beneath the southeastern margin of Tibet by stacking azimuthal receiver functions[J]. Chinese Journal of Geophysics, 2017, 60(12): 4537-4556 (in Chinese). [133] Peng H C, Gao Z H, Hu J F, et al. Upper mantle anisotropy in the southeastern margin of the Tibetan Plateau and geodynamic implications[J]. Physics of the Earth and Planetary Interiors, 2022, 327: 106877. [134] Shi Y T, Gao Y, Zhang H S, et al. Crustal azimuthal anisotropy in the lateral collision zone of the SE margin of the Tibetan Plateau and its tectonic implications[J]. Geophysical Journal International, 2023, 234(1): 1-11. [135] Kong F S, Gao S S, Liu K H, et al. Receiver function investigations of seismic anisotropy layering beneath Southern California[J]. Journal of Geophysical Research: Solid Earth, 2018, 123(12): 10672-10683. [136] 杨妍, 姚华建, 张萍, 等. 用接收函数方法研究华北克拉通中部造山带及其邻域地壳方位各向异性[J]. 中国科学: 地球科学, 2018, 48(7): 912-923. YANG Yan, YAO Hua-jian, ZHANG Ping, et al. Crustal azimuthal anisotropy in the trans-North China orogen and adjacent regions from receiver functions[J]. Science China Earth Sciences, 2018, 48(7): 912-923 (in Chinese). [137] Liu J, Wu J P, Wang W L, et al. Seismic anisotropy beneath the eastern margin of the Tibetan Plateau from SKS splitting observations[J]. Tectonophysics, 2020, 785: 228430. [138] Kaneshima S, Silver P G. A search for source side mantle anisotropy[J]. Geophysical Research Letters, 1992, 19(10): 1049-1052. |
| [1] | 周艳杰, 曹天明, 张雅楠, 马啸, 石玉涛, 黄雪源. 南阿拉斯加区域三维P波高分辨层析成像研究[J]. 地震, 2025, 45(1): 47-62. |
| [2] | 刘亚茹, 石玉涛, 贺茜君, 周艳杰, 李静爽, 黄雪源. Landers地震周边区域速度结构的时移层析成像研究[J]. 地震, 2024, 44(4): 45-61. |
| [3] | 杨唯佳, 周艳杰, 姜恩元, 石玉涛, 马啸, 贺茜君, 黄雪源. 2019年长宁MS6.0地震周边区域速度与P波各向异性成像研究[J]. 地震, 2023, 43(4): 1-20. |
| [4] | 寇华东, 王伟君, 闫坤, 叶志鹏, 吕恒茹. 分布式光纤声波传感背景噪声近地表成像: 在北京房山的应用[J]. 地震, 2023, 43(3): 50-65. |
| [5] | 查小惠. 倾斜界面和各向异性对谐波分解方法的影响研究[J]. 地震, 2022, 42(1): 99-110. |
| [6] | 杨峰. 滇西北地区主要断裂带及邻区三维P波速度结构的双差地震层析成像[J]. 地震, 2021, 41(3): 42-58. |
| [7] | 杨峰. 应用远震有限频率层析成像反演中国东北地区上地幔P波三维速度结构[J]. 地震, 2020, 40(4): 33-48. |
| [8] | 吴鹏, 贾华, 张小涛, 王雪飞, 刘爽. 晋冀蒙交界地区的地壳厚度与泊松比特征[J]. 地震, 2019, 39(4): 63-75. |
| [9] | 杨彦明, 陈婧, 熊峰, 张云, 马援, 贾昕晔, 贾彦杰. 华北克拉通西部块体北缘及邻区地壳厚度与泊松比分布特征[J]. 地震, 2019, 39(2): 97-109. |
| [10] | 陈佳, 高琼, 王军, 邓嘉美. 利用接收函数研究程海断裂带莫霍面深度和地壳内S波速度结构特征[J]. 地震, 2019, 39(1): 72-80. |
| [11] | 杨峰. 华北北部地区地壳三维P波速度结构的双差地震层析成像[J]. 地震, 2019, 39(1): 58-71. |
| [12] | 张娜, 赵翠萍, 周连庆. 三峡水库区上地壳三维精细速度结构成像[J]. 地震, 2018, 38(4): 37-48. |
| [13] | 邓嘉美, 陈佳, 高琼, 张华英, 王军, 叶泵, 李孝宾. 云南宾川地区的地壳厚度和泊松比分布特征研究[J]. 地震, 2016, 36(3): 99-108. |
| [14] | 王琼, 高原, 钮凤林, 陈运泰. 利用接收函数计算地壳各向异性的可靠性分析及倾斜界面的影响*[J]. 地震, 2016, 36(2): 14-25. |
| [15] | 宫猛, 李信富, 张素欣, 罗燕, 曾祥芳, 刘丽. 利用接收函数研究河北及邻区地壳厚度与泊松比分布特征[J]. 地震, 2015, 35(2): 34-42. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||