[1] Aki K, Lee W H K. Determination of three-dimensional velocity anomalies under a seismic array using first P arrival times from local earthquakes. A homogeneous initial model[J]. J Geophys Res, 1976, 81: 4381-4399. [2] Aki K, Christoffersson A, Husebye E S. Determination of the three dimentional seismic structure of the lithospere[J]. J Geophys Res, 1977, 82: 277-286. [3] Zhao D, Hasegawa A, Horiuchi S. Tomographic Imaging of P and S wave velocity structure beneath northeastern Japan[J]. J Geophys Res, 1992, 97: 19909-19928. [4] Zhao D, Hasegawa A, Kanamori H. Deep structure of Japan subduction zone as derived from local, regional and teleseismic events[J]. J Geophys Res, 1994, 99: 22313-22329. [5] Bijwaard H, Spakman W, Engdahl E R. Closing the gap between regional and global travel time tomography[J]. J Geophys Res, 1998, 103: 30055-30078. [6] Huang J, Zhao D. High-resolution mantle tomography of China and surrounding regions[J]. J Geophys Res, 2006, 111: B09305, doi: 10.1029/2005JB004066. [7] Li C, van der Hilst R D, Engdahl E R, et al. A new global model for P wave speed variations in Earth's mantle[J]. Geochem Geophys Geosyst, 2008, 9: Q05018, doi: 10.1029/2007GC001806. [8] Zhao D, Kanamori H, Negishi H, et al. Tomography of the source area of the 1995 Kobe earthquake: Evidence for fluids at the hypocenter?[J]. Science, 1996, 274: 1891-1894. [9] Zhang H, Thurber C. Adaptive mesh seismic tomography based on tetrahedral and Voronoi diagrams: Application to Parkfield, California[J]. J Geophys Res, 2005, 110: B04303, doi: 10.1029/2004JB003186. [10] Zhao D, Kayal J R. Impact of seismic tomography on Earth sciences[J]. Current Science, 2000, 79: 1208-1214. [11] Dahlen F A, Hung S H, Nolet G. Fréchet kernels for finite-frequency traveltimes-Ⅰ. Theory[J]. Geophys J Int, 2000, 141: 157-174. [12] Hung S H, Dahlen F A. Nolet G. Fréchet kernels for finite-frequency traveltimes-Ⅱ. Example[J]. Geophys J Int, 2000, 141:175-203. [13] Woodward M J. Wave-equation tomography[J]. Geophys, 1992, 57:15-26. [14] Kravstov Y, Orlov Y. Geometrical Optics of Inhomogeneous Media[M]. Springer-Verlag, New York, 1990. [15] Spetzler J, Snieder R. The formation of caustics in two and three-dimensional media[J]. Geophys J Int, 2001, 144:175-182. [16] Marquering H, Dahlen F A, Nolet G. Three-dimensional sensitivity kernels for finite-frequency traveltimes: the banana-doughnut paradox[J]. Geophys J Int, 1999, 137: 805-815. [17] Zhao L, Jordan T H, Chapman C H. Three-dimensional Fréchet differential kernels for seismic delay times[J]. Geophy J Int, 2000, 141: 558-576. [18] Hung S H, Shen Y, Chiao L Y. Imaging seismic velocity structure beneath the Iceland hot spot: a finite frequency approach[J]. J Geophys Res, 2004, 109: B08305, doi: 10.1029/2003JB002889. [19] Yang T, Shen Y, van der Lee S, et al. Upper mantle structure beneath the Azores hotspot from finite-frequency seismic tomography[J]. Earth Planet Sci Lett, 2006, 250:11-26. [20] Hung S H, Dahlen F A, Nolet G. Wavefront healing: a banana-doughnut perspective[J]. Geophys J Int, 2001, 146: 289-312. [21] Baig A M, Dahlen F A, Hung S H. Traveltimes of waves in three-dimension random media[J]. Geophys J Int, 2003, 153: 467-482. [22] Nolet G, Dahlen F A. Wave front healing and the evolution of seismic delay times[J]. J Geophys Res, 2000, 105(B8): 19043-19054. [23] Dahlen F A, Baig A M. Fréchet kernels for body wave amplitudes[J]. Geophys J Int, 2002, 150: 440-466. [24] Tromp J, Tape C, Liu Q. Seismic tomography, adjoint methods, time reversal, and banana-doughnut kernels[J]. Geophys J Int, 2005, 160: 195-216. [25] Zhao L, Jordan T H, Olsen K B, et al. Fréchet kernels for imaging regional earth structure based on three-dimensional reference models[J]. Bull Seism Soc Am, 2005, 95:2066-2080. [26] Liu Q, Tromp J. Finite-frequency kernels based upon adjoint methods[J]. Bull seism Soc Am, 2006, 96: 2383-2397. [27] Chen P, Zhao L, Jordan T H. Full 3D tomography for crustal structure of the Los Angeles Region[J]. Bull Seismol Soc Am, 2007, 97 (4): 1094-1120. [28] Zhou Y, Dahlen F A, Nolet G, Three-dimensional sensitivity kernels for surface wave observables[J]. Geophys J Int, 2004, 158: 142-168. [29] Zhou Y, Dahlen F A, Nolet G, et al. Finite-frequency effects in global surface-wave tomography[J]. Geophys J Int, 2005, 163: 1087-1111. [30] Yoshizawa K, Kennett B L N. Sensitivity kernels for finite-frequency surface waves[J]. Geophys J Int, 2005, 162: 910-926. [31] Dahlen F A, Zhou Y. Surface-wave group-delay and attenuation kernels[J]. Geophys J Int, 2006, 165: 545-554. [32] Zhao L, Jordan T H. Structural sensitivities of finite-frequency seismic waves: a full-wave approach[J]. Geophys J Int., 2006, 165:981-990. [33] Montelli R, Nolet G, Dahlen F A, et al. Finite-frequency Tomography reveals a variety of plumes in the mantle[J]. Science, 2004, 303: 338-343. [34] Montelli R, Nolet G, Dahlen F A, et al. Global P and PP tomography: Ray versus wave[J]. Geophys J Int, 2004, 158: 637-654. [35] Dahlen F A, Nolet G. Comment on the paper “On sensitivity kernels for ‘wave-equation’ transmission tomography” by de Hoop and van der Hilst, in review[J]. Geophys J Int, 2005, 163: 949-951. [36] de Hoop M, van der Hilst R. On sensitivity kernels for ‘wave-equation’ transmission tomography[J]. Geophys J Int, 2005, 160: 621-633. [37] de Hoop M V, van der Hilst R D. Reply to comment by F.A. Dahlen and G. Nolet on “On sensitivity kernels for ‘wave equation’ transmission tomography”[J]. Geophys J Int, 2005, 163: 952-955. [38] Montelli R, Nolet G, Dahlen F A. Comment on ‘Banana-doughnut kernels and mantle tomography’ by van der Hilst and de Hoop[J]. Geophys J Int, 2006, 167: 1204-1210. [39] Montelli R, Nolet G, Dahlen F A, et al. A catalogue of deep mantle plumes: New results from finite-frequency tomography[J]. Geochem Geophys Geosyst, 2006, 7, Q11007, doi: 10.1029/2006GC001248. [40] Trampert J, Spetzler J. Surface wave tomography: finite frequency effects lost in the null space[J]. Geophys J Int, 2006, 164: 394-400. [41] van der Hilst R D, de Hoop M V. Reply to comment by R. Montelli, G. Nolet and F. A. Dahlen on ‘Banana-doughnut kernels and mantle tomography’[J]. Geophys J Int, 2006, 167(3): 1211-1214(4). [42] Hung S H, Garnero E J, Chiao L Y, et al. Finite frequency tomography of D” shear velocity heterogeneity beneath the Caribbean[J]. J Geophys Res, 2005, 110: B07305, doi: 10.1029/2004JB003373. [43] Ren Y, Shen Y. Finite frequency tomography in southeastern Tibet: Evidence for the causal relationship between mantle lithosphere delamination and the north-south trending rifts[J]. J Geophys Res, 2008, 113: B10316, doi: 10.1029/2008JB005615. [44] Zhou Y, Nolet G, Dahlen F A, et al. Global upper-mantle structure from finite-frequency surface-wave tomography[J]. J Geophys Res, 2006, 111: B04304, doi : 10.1029/2005JB003677. [45] Chevrot S, Zhao L. Multiscale finite-frequency Rayleigh wave tomography of the Kaapvaal craton[J]. Geophys J Int, 2007, 169(1): 201-215(15). [46] Peter D, Boschi L, Deschamps F, et al. A new finite-frequency shear-velocity model of the European-Mediterranean region[J]. Geophysical Research Letters, 2008, 35: L16315, doi: 10.1029/2008GL034769. [47] Olsen K B. Simulation of three-dimensional wave propagation in the Salt Lake Basin[D]. Ph.D. Thesis, University of Utah, Salt Lake City, Utah, 1994, 157. [48] Zhang Z, Shen Y, Zhao L. Finite-frequency sensitivity kernels for head waves[J]. Geophys J Int, 2007, 171: 847-856. [49] Zhang Z, Shen Y. Cross-dependence of finite-frequency compressional waveorms to shear seismic wave-speeds[J]. Geophys J Int, 2008, 174: 941-948. [50] Shen Y, Zhang Z, Zhao L. Component-dependent Frechet sensitivity kernels and utility of three-component seismic records[J]. Bull Seism Soc Am, 2008, 98(5): 2517-2525. [51] Tape C, Liu Q Y, Tromp J. Finite-frequency tomography using adjoint methods-Methodology and examples using membrane surface waves[J]. Geophys J Int, 2007, 168: 1105-1129. [52] Liu Q Y, Tromp J. Finite-frequency sensitivity kernels for global seismic wave propagation based upon adjoint methods[J]. Geophys J Int, 2008, 174(1): 265-286(22). [53] Komatitsch D, Tromp J. Introduction to the spectral element method for three-dimensional seismic wave propagation[J]. Geophys J Int, 1999, 139: 806-822. [54] Sieminski A, Liu Q Y, Trampert J, et al. Finite-frequency sensitivity of surface waves to anisotropy based upon adjoint methods[J]. Geophys J Int, 2007, 168(3): 1153-1174(22). [55] Sieminski A, Liu Q Y, Trampert J, et al. Finite-frequency sensitivity of body waves to anisotropy based upon adjoint methods[J]. Geophys J Int, 2007, 171: 368-389. [56] Chen P, Jordan T H, Zhao L. Full three-dimensional tomography: a comparison between the scattering-integral and adjoint-wavefield methods[J]. Geophys J Int, 2007, 170(1): 175-181(7). [57] Zhang Z, Shen Y, Zhao L, et al. Refined local and regional seismic velocity and attenuation models from finite-frequency waveforms[M]. Proceedings of the 29th Monitoring Research Review, 2007, 343-352. [58] Zhang W, Shen Y, Zhao L, et al. Refined local and regional seismic velocity and attenuation models from finite-frequency waveforms[M]. Proceedings of the 30th Monitoring Research Review, 2008, 316-325. |